Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Theoretical Bound Which Improves the Performance of Compilation-Based Multi-Agent Path Finding
Indexado
WoS WOS:001492121500016
Scopus SCOPUS_ID:105005341240
DOI 10.1109/ACCESS.2025.3569496
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



A well-known approach to optimally solving Multi-Agent Path Finding (MAPF) is by compilation to Boolean Satisfiability or Answer Set Programming. Such compilation-based approaches to MAPF are superior to others on dense, relatively small instances. During solving, the underlying solver is invoked multiple times, each with an encoding of the same instance for a different makespan. The runtime of the last solver invocation, whose input is the instance encoded with a theoretical upper bound of the makespan of the optimal solution, is critical to performance. This paper proposes a new theoretical upper bound for such a last invocation, which we prove is correct. Unlike the previously known bound, given a MAPF instance, our bound requires computing a semi-relaxed solution, which is the union of cost-optimal solutions for partitions of such an instance. The computation of our new bound requires optimally solving partitions, which requires more computational resources than those needed for computing the bound currently used by state-of-the-art solvers. We propose a recursive parallel approach that, we call ReBo, which despite additional overhead in upper bound computation, obtains substantially better overall results by exploiting the new bound. ReBo uses a heuristic to select an appropriate partition for bound computation, which does not guarantee that the solution returned is optimal. However, in our benchmarks, composed of 2,890 problems over warehouses and random instances, ReBo never finds a suboptimal solution. In addition, we found that the new bound is significantly tighter than the previously known, on average, 21.2% smaller than the previous bound. This allows us to generate encodings that are around 33.45% smaller, allowing ReBo to solve 4.9% more instances than a state-of-the-art solver in our benchmark set.

Revista



Revista ISSN
Ieee Access 2169-3536

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Information Systems
Telecommunications
Engineering, Electrical & Electronic
Scopus
Materials Science (All)
Computer Science (All)
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Lopez, Rodrigo - Pontificia Universidad Católica de Chile - Chile
2 Asin-Acha, Roberto - Universidad Técnica Federico Santa María - Chile
3 BAIER-ARANDA, JORGE ANDRES Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio Fundamentos de los Datos - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Agency for Research and Development (ANID)
Agencia Nacional de Investigación y Desarrollo
Agenția Națională pentru Cercetare și Dezvoltare
National Center for Artificial Intelligence Centro Nacional de Inteligencia Artificial, Basal ANID
National Center for Artificial Intelligence Centro Nacional de Inteligencia Artificial

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the National Agency for Research and Development (ANID), Doctorado Nacional, under Grant 21201864; and in part by the National Center for Artificial Intelligence Centro Nacional de Inteligencia Artificial, Basal ANID, under Grant FB210017.
This work was supported in part by the National Agency for Research and Development (ANID), Doctorado Nacional, under Grant 21201864; and in part by the National Center for Artificial Intelligence Centro Nacional de Inteligencia Artificial, Basal ANID, under Grant FB210017.

Muestra la fuente de financiamiento declarada en la publicación.