Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Invariant-region-preserving WENO schemes for one-dimensional multispecies kinematic flow models
Indexado
WoS WOS:001498358300003
Scopus SCOPUS_ID:105005491407
DOI 10.1016/J.JCP.2025.114081
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Multispecies kinematic flow models are defined by systems of N strongly coupled, nonlinear first-order conservation laws, where the solution is a vector of N partial volume fractions or densities. These models arise in various applications including multiclass vehicular traffic and sedimentation of polydisperse suspensions. The solution vector should take values in a set of physically relevant values (i.e., the components are nonnegative and sum up at most to a given maximum value). It is demonstrated that this set, the so-called invariant region, is preserved by numerical solutions produced by a new family of high-order finite volume numerical schemes adapted to this class of models. To achieve this property, and motivated by [X. Zhang, C.-W. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys. 229 (2010) 3091-3120], a pair of linear scaling limiters is applied to a high-order weighted essentially non-oscillatory (WENO) polynomial reconstruction to obtain invariant-region-preserving (IRP) high-order polynomial reconstructions. These reconstructions are combined with a local Lax-Friedrichs (LLF) or Harten-Lax-van Leer (HLL) numerical flux to obtain a high-order numerical scheme for the system of conservation laws. It is proved that this scheme satisfies an IRP property under a suitable Courant-Friedrichs-Lewy (CFL) condition. The theoretical analysis is corroborated with numerical simulations for models of multiclass traffic flow and polydisperse sedimentation.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Interdisciplinary Applications
Physics, Mathematical
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Barajas-Calonge, Juan - Universidad del Bío Bío - Chile
2 Burger, R. Hombre Universidad de Concepción - Chile
Univ Valencia - España
3 Mulet, Pep - Universidad de Concepción - Chile
Universitat de València - España
4 VILLADA-OSORIO, LUIS MIGUEL Hombre Universidad del Bío Bío - Chile
Univ Valencia - España
Universidad de Concepción - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
CRHIAM
ANID (Chile)
Agencia Nacional de Investigación y Desarrollo
MCIN/AEI
National Agency for Research and Development, ANID-Chile
Centro de Modelamiento Matematico (CMM) of BASAL funds for Centers of Excellence
GVA

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
JBC, RB and LMV are supported by ANID (Chile) through Anillo project ANID/PIA/ACT210030 and Centro de Modelamiento Matematico (CMM), project FB210005 of BASAL funds for Centers of Excellence. RB is also supported by CRHIAM, projects ANID/Fondap/15130015 and ANID/Fondap/1523A0001 and Fondecyt project 1250676. JBC is supported by the National Agency for Research and Development, ANID-Chile through Scholarship Program, Beca Doctorado Nacional 2022, folio 21221387. PM is supported by PID2020-117211GB-I00 and PID2023-146836NB-I00, granted by MCIN/AEI/10.13039/501100011033, and CIAICO/2021/227, granted by GVA.
JBC, RB and LMV are supported by ANID (Chile) through Anillo project ANID/PIA/ACT210030 and Centro de Modelamiento Matem\u00E1tico (CMM), project FB210005 of BASAL funds for Centers of Excellence. RB is also supported by CRHIAM, projects ANID/Fondap/15130015 and ANID/Fondap/1523A0001 and Fondecyt project 1250676. JBC is supported by the National Agency for Research and Development, ANID-Chile through Scholarship Program, Beca Doctorado Nacional 2022, folio 21221387. PM is supported by PID2020-117211GB-I00 and PID2023-146836NB-I00, granted by MCIN/AEI/10.13039/501100011033, and CIAICO/2021/227, granted by GVA.

Muestra la fuente de financiamiento declarada en la publicación.