Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Analysis of the Wear and Corrosion Resistance on Cu-Ni-Al Composites Reinforced with CeO2 Nanoparticles
Indexado
WoS WOS:001506571700001
Scopus SCOPUS_ID:105007704407
DOI 10.3390/MA18112438
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu-50Ni-5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by the mechanical alloying method and spark plasma sintering (SPS). The samples were evaluated using a single scratch test with a cone-spherical diamond indenter under progressive normal loading conditions. A non-contact 3D surface profiler characterized the scratched surfaces to support the analysis. Progressive loading tests indicated a reduction of up to 50% in COF with 1% NPs, with specific values drop-ping from 0.48 in the unreinforced alloy to 0.25 in the CeO2-doped composite at 15 N of applied load. Furthermore, the introduction of CeO2 decreased scratch depths by 25%, indicating enhanced wear resistance. The electrochemical behavior of the samples was evaluated by electrochemical impedance spectroscopy (EIS) in a molten carbonate medium under a H-2/N-2 atmosphere at 550 degrees C for 120 h. Subsequently, the corrosion products were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CeO2-reinforced alloy exhibits superior electro-chemical stability in molten carbonate environments (Li2CO3-K2CO3) under an H-2/N-2 atmosphere at 550 degrees C for 120 h. A marked reduction in polarization resistance and a pronounced re-passivation effect were observed, suggesting enhanced anodic protection. This effect is attributed to the formation of aluminum and copper oxides in both compositions, together with the appearance of NiO as the predominant phase in the materials reinforced with nanoparticles in a hydrogen-reducing atmosphere. The addition of CeO2 nanoparticles significantly improves wear resistance and corrosion performance. Recognizing this effect is vital for creating strategies to enhance the material's durability in challenging environments like MCFC.

Revista



Revista ISSN
Materials 1996-1944

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Materials Science, Multidisciplinary
Scopus
Materials Science (All)
Condensed Matter Physics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 MARTINEZ-PARGA, CAROLA Mujer Universidad de La Frontera - Chile
2 Valverde, Barbara - Pontificia Universidad Católica de Valparaíso - Chile
3 Del Valle-Rodriguez, Aurora - Universidad de La Frontera - Chile
4 De La Fuente, Brennie - Universidad de La Frontera - Chile
4 Bustos-De La Fuente, Brennie - Universidad de La Frontera - Chile
5 Machado, Izabel - UNIV SAO PAULO - Brasil
Universidade de São Paulo - Brasil
6 Briones, Francisco - Pontificia Universidad Católica de Valparaíso - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDEQUIP
CAPES
CNPq
FAPESP
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa do Estado de São Paulo
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ANID Fondecyt
Agencia Nacional de Investigación y Desarrollo
Millennium Institute on Green Ammonia as Energy Vector-MIGA
Millennium Scientific Initiative by ANID

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors thank ANID FONDECYT Grant 11190500 and FONDEQUIP EQM130014. EQM 170087. Millennium Institute on Green Ammonia as Energy Vector-MIGA(ICN2021_023) supported by the Millennium Scientific Initiative by ANID. The authors thank Brazilian foundations (CNPq, CAPES, and FAPESP).
The authors thank ANID FONDECYT Grant 11190500 and FONDEQUIP EQM130014. EQM 170087. Millennium Institute on Green Ammonia as Energy Vector\u2014MIGA (ICN2021_023) supported by the Millennium Scientific Initiative by ANID. The authors thank Brazilian foundations (CNPq, CAPES, and FAPESP).

Muestra la fuente de financiamiento declarada en la publicación.