Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Memory Model for Question Answering from Streaming Data Supported by Rehearsal and Anticipation of Coreference Information
Indexado
WoS WOS:001379548606005
DOI
Año 2023
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Existing question answering methods often assume that the input content (e.g., documents or videos) is always accessible to solve the task. Alternatively, memory networks were introduced to mimic the human process of incremental comprehension and compression of the information in a fixed-capacity memory. However, these models only learn how to maintain memory by backpropagating errors in the answers through the entire network. Instead, it has been suggested that humans have effective mechanisms to boost their memorization capacities, such as rehearsal and anticipation. Drawing inspiration from these, we propose a memory model that performs rehearsal and anticipation while processing inputs to memorize important information for solving question answering tasks from streaming data. The proposed mechanisms are applied self-supervised during training through masked modeling tasks focused on coreference information. We validate our model on a short-sequence (bAbI) dataset as well as large-sequence textual (NarrativeQA) and video (ActivityNet-QA) question answering datasets, where it achieves substantial improvements over previous memory network approaches. Furthermore, our ablation study confirms the proposed mechanisms' importance for memory models.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Araujo, Vladimir - Katholieke Univ Leuven - Bélgica
Pontificia Universidad Católica de Chile - Chile
2 Soto, Alvaro - Pontificia Universidad Católica de Chile - Chile
3 Moens, Marie-Francine - Katholieke Univ Leuven - Bélgica
4 Boyd-Graber, J -
5 Okazaki, N -
6 Rogers, A -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
European Research Council Advanced Grant
National Center for Artificial Intelligence CENIA

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was partially funded by European Research Council Advanced Grant 788506, FONDECYT grant 1221425, and National Center for Artificial Intelligence CENIA FB210017, Basal ANID.

Muestra la fuente de financiamiento declarada en la publicación.