Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S13253-025-00686-6 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
When analyzing data in the vast majority of knowledge domains, it is common to encounter a high number of zeros. This is no different when working with data science in agriculture. When dealing with proportional data with a zero inflation, a useful approach is to model the problem with zero-inflated beta regression (ZIBe). This allows for a statistically correct (or at least reasonable) approach and enables the counting of zeros in the database. In this study, we analyzed a dataset gathered from a field experiment, aiming to ascertain the average proportion of citrus canker present on orange plant leaves. This was done in relation to the genotypes of four different rootstocks used in the experiment. The experiment combined the genetics of four rootstocks (lower part of the plant) with nine types of orange varieties in the canopy (upper part of the plant). Modeling provided information regarding the estimation of the expected mean value through modeling with Bayesian zero-inflated beta regression. This made it possible to assess the average incidence for a given plant based on its genotype and rootstock combination, allowing for the estimation of the expected value for the observed combination. Upon concluding the modeling, it was observed that the Orange Caipira rootstock genotype appeared to be more resistant to the disease, while the Lemon Cravo rootstock genotype was classified as the most susceptible. The rootstock genotypes Ol & iacute;mpia, Arapongas, Ipigu & aacute; IAC, and EEL had equal chances of developing the disease. Supplementary materials accompanying this paper appear on-line.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Henriques, Marcos Jardel | - |
UNIV SAO PAULO - Brasil
Universidade Federal de São Carlos - Brasil |
| 2 | Junior, Oilson Alberto | - |
UNIV SAO PAULO - Brasil
|
| 2 | Gonzatto Junior, Oilson Alberto | - |
Universidade de São Paulo - Brasil
|
| 3 | Goncalves-Zuliane, Aline Maria Orbolato | - |
State Univ Maringa UEM - Brasil
Universidade Estadual de Maringá - Brasil |
| 4 | Nunes, William Mario de Carvalho | - |
State Univ Maringa UEM - Brasil
Universidade Estadual de Maringá - Brasil |
| 5 | Guedes, Terezinha Aparecida | - |
State Univ Maringa UEM - Brasil
Universidade Estadual de Maringá - Brasil |
| 6 | Janeiro, Vanderly | - |
State Univ Maringa UEM - Brasil
Universidade Estadual de Maringá - Brasil |
| 7 | Nascimento, Diego C. | Hombre |
Universidad de Atacama - Chile
|
| 8 | Ramos, Pedro Luiz | - |
Pontificia Universidad Católica de Chile - Chile
|
| 9 | Louzada, F. | Hombre |
UNIV SAO PAULO - Brasil
Universidade de São Paulo - Brasil |
| Fuente |
|---|
| CNPq |
| FAPESP |
| Conselho Nacional de Desenvolvimento Científico e Tecnológico |
| Fundação de Amparo à Pesquisa do Estado de São Paulo |