Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/IRC63610.2024.00055 | ||
| Año | 2024 | ||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Depth data is a crucial source of information for applications like autonomous vehicles and 3D cinema. However, depth maps often contain holes or low-confidence regions, which must be addressed to ensure optimal performance in tasks like object avoidance and path planning. This paper proposes a convolutional neural network (CNN) to replace the feature extraction stage of a hybrid depth completion model. The hybrid model integrates convolutional stages with an infinity Laplacian-based interpolator to propagate sparse depth data into missing regions.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Lazcano, Vanel | - |
Universidad Mayor - Chile
|
| 2 | Cho, Anthony | - |
Universidad Mayor - Chile
|
| 3 | Loyola, Oscar | - |
Universidad Autónoma de Chile - Chile
|
| 4 | Dinani, Hossein T. | - |
Universidad Mayor - Chile
|
| 5 | IEEE COMPUTER SOC | Corporación |