Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/SIPAIM62974.2024.10783621 | ||
| Año | 2024 | ||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The quality of fiber bundles for tractography is linked to dMRI acquisition parameters, with higher quality from costly multi-shell exams. This study examines whether the new FOD-Swin-Net (FSN) angular super-resolution deep learning method matches the quality and technique of multishell multi-tissue (MSMT-CSD) reconstruction, while reducing computational demands and acquisition complexity with an initial single-shell acquisition. We also compare FSN to the single-shell derived FOD standard (SS3T-CSD). Fascicle segmentation in deep and superficial white matter was performed using atlases. By calculating bundle masks and density maps we computed similarity metrics including streamline-based bundle adjacency, voxel-based bundle adjacency, voxel-based density correlation, and weighted Dice coefficient. The findings reveal that approximately 82.6% of the evaluated fascicles show a greater similarity between FSN and the MSMT-CSD technique, and of this percentage, 56.7% exhibit a significant difference, indicating potential cost-effective benefits.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Vidal, Natalia | - |
Universidad de Concepción - Chile
|
| 2 | da Silva, Mateus Oliveira | - |
UNIV ESTADUAL CAMPINAS - Brasil
|
| 3 | Carmo, Diedre | - |
UNIV ESTADUAL CAMPINAS - Brasil
|
| 4 | Navarrete, Sebastian | - |
Universidad de Concepción - Chile
|
| 5 | Guevara, Pamela | - |
Universidad de Concepción - Chile
|
| 6 | Rittner, Leticia | - |
UNIV ESTADUAL CAMPINAS - Brasil
|
| 7 | IEEE | Corporación |