Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Bayesian model selection for analyzing predictor-dependent directional data
Indexado
WoS WOS:001503498100002
Scopus SCOPUS_ID:105007454960
DOI 10.1007/S11222-025-10655-1
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The need for models for directional data is increasing, driven primarily by the necessity of analyzing peak hours in 24-hour services. Motivated by the need to analyze demand data for a 24-hour bike rental service in Seoul and the factors influencing demand fluctuations across distinct hours, we develop a Bayesian nonparametric density regression modeling framework for the case of a circular response and linear covariates, allowing model selection. Our proposal is based on a linear dependent Dirichlet process mixture of projected normal distributions, accommodating asymmetrical and multimodal shapes, in conjunction with discrete spike-and-slab priors, to enable model selection. A further advantage of our approach is that it enables model averaging, thereby properly accounting for model uncertainty. The simulation study shows that, across various scenarios, our model (i) successfully recovers the true functional form of the conditional density and (ii) selects the correct model, with accuracy improving as the sample size increases. The application of our method suggests that weather conditions significantly impact bike demand. The approach also allows us to predict peak rental times, revealing that, for instance, on a typical summer day, bike demand decreases between 8 am and 4 pm, while in winter, it drops during the early morning.

Revista



Revista ISSN
Statistics And Computing 0960-3174

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Theory & Methods
Statistics & Probability
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Guevara, Ingrid - Pontificia Universidad Católica de Chile - Chile
2 Inacio, Vanda - UNIV EDINBURGH - Reino Unido
The University of Edinburgh - Reino Unido
3 Gutierrez, Luis - Pontificia Universidad Católica de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
NLHPC
Agencia Nacional de Investigación y Desarrollo
Agenția Națională pentru Cercetare și Dezvoltare
National Agency for Research and Development (ANID)/Scholarship Program/Doctorado Nacional/2023

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Ingrid Guevara was funded by the National Agency for Research and Development (ANID)/Scholarship Program/Doctorado Nacional/2023-21230990. Luis Gutierrez was supported by Fondecyt Grant 1220229. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (CCSS210001).
Ingrid Guevara was funded by the National Agency for Research and Development (ANID)/Scholarship Program/Doctorado Nacional/2023-21230990. Luis Guti\u00E9rrez was supported by Fondecyt Grant 1220229. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (CCSS210001).

Muestra la fuente de financiamiento declarada en la publicación.