Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Single Hidden Layer Neural Networks With Random Weights Based on Nondifferentiable Functions
Indexado
WoS WOS:001489726500001
Scopus SCOPUS_ID:105005345887
DOI 10.1109/TNNLS.2025.3555178
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Computational algorithms that utilize nondifferentiable functions have proven highly effective in machine learning applications. This study introduces a novel framework for incorporating nondifferentiable functions into the objective functions of random-weight neural networks, specifically focusing on functional link random vector functional-link (RVFL) networks and extreme learning machines (ELMs). Our framework explores six nondifferentiable functions: the norms L-1,L-1 , L-1,L-2 , and L-2,L-2 and the functions AbsMin, AbsMax, and a seminorm MaxMin. To enhance robustness, Fourier random assignments are applied as activation functions within these networks. The integration of these nondifferentiable functions into the objective functions of RVFL and ELM aims to reduce computational time in both training and testing stages, without compromising accuracy. We conducted extensive experiments on 12 benchmark datasets, encompassing small, medium, and large datasets, to evaluate the proposed algorithms against the L-2,L-1 -regularized random Fourier feature ELM ( L-2,L-1 -RF-ELM), which uses joint-norm regularization ( L-r,L-p ) as documented in previous studies. Our findings indicate that the algorithms based on nondifferentiable functions not only achieve high accuracy but also significantly reduce computation time compared to the L-2,L-1 -based algorithm and other standard machine learning approaches.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Hardware & Architecture
Computer Science, Theory & Methods
Computer Science, Artificial Intelligence
Engineering, Electrical & Electronic
Scopus
Computer Networks And Communications
Computer Science Applications
Artificial Intelligence
Software
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Huerfano-Maldonado, Yoleidy - Universidad Católica del Maule - Chile
Univ Tours - Francia
Université de Tours - Francia
2 Vilches-Ponce, Karina - Universidad Católica del Maule - Chile
3 MORA-COFRE, MARCO ANTONIO Hombre Universidad Católica del Maule - Chile
4 Tauber, C. Hombre Univ Tours - Francia
Inserm Lab - Francia
Imagerie et Cerveau (iBrain) - Francia
5 Vera, Miguel Hombre UNIV SIMON BOLIVAR - Colombia
Universidad Simón Bolivar, Cúcuta - Colombia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Research Project FONDECYT REGULAR 2020 "Very Large Fingerprint Classification based on a Fast and Distributed Extreme Learning Machine," Ministry of Science, Technology, Knowledge and Innovation, Government of Chile
Research and Development (ANID)/Scholarship Program/DOCTORATE SCHOLARSHIPS CHILE

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The work of Yoleidy Huerfano-Maldonado was supported by the Research and Development (ANID)/Scholarship Program/DOCTORATE SCHOLARSHIPS CHILE/2021-21211760 for Marco Mora the Research Project FONDECYT REGULAR 2020 "Very Large Fingerprint Classification based on a Fast and Distributed Extreme Learning Machine," Ministry of Science, Technology, Knowledge and Innovation, Government of Chile under Grant 1200810.

Muestra la fuente de financiamiento declarada en la publicación.