Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Spatial–Temporal Variability of Soybean Yield Using Separable Covariance Structure
Indexado
WoS WOS:001505742000001
Scopus SCOPUS_ID:105007951674
DOI 10.3390/AGRICULTURE15111199
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



(1) Understanding and characterizing the spatial and temporal variability of agricultural data is a key aspect of precision agriculture, particularly in soil management. Modeling the spatiotemporal dependency structure through geostatistical methods is essential for accurately estimating the parameters that define this structure and for performing Kriging-based interpolation. This study aimed to analyze the spatiotemporal variability of the soybean yield over ten crop years (2012-2013 to 2021-2022) in an agricultural area located in Cascavel, Paran & aacute;, Brazil. (2) Spatial analyses were conducted using two approaches: the Gaussian linear spatial model with independent multiple repetitions and the spatiotemporal model with a separable covariance structure. (3) The results showed that the maps generated using the Gaussian linear spatial model with multiple independent repetitions exhibited similar patterns to the individual soybean yield maps for each crop year. However, when comparing the kriged soybean yield maps based on independent multiple repetitions with those derived from the spatiotemporal model with a separable covariance structure, the accuracy indices indicated that the maps were dissimilar. (4) This suggests that incorporating the spatiotemporal structure provides additional information, making it a more comprehensive approach for analyzing soybean yield variability. The best model was chosen through cross-validation and a trace. Thus, incorporating a spatiotemporal model with a separable covariance structure increases the accuracy and interpretability of soybean yield analyses, making it a more effective tool for decision-making in precision agriculture.

Revista



Revista ISSN
Agriculture (Switzerland) 2077-0472

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Agronomy
Scopus
Agronomy And Crop Science
Plant Science
Food Science
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Maltauro, Tamara Cantu - Western Parana State Univ UNIOESTE - Brasil
Universidade Estadual do Oeste do Paraná - Brasil
2 Uribe-Opazo, Miguel Angel Hombre Western Parana State Univ UNIOESTE - Brasil
Universidade Estadual do Oeste do Paraná - Brasil
3 Guedes, L. P. C. Mujer Western Parana State Univ UNIOESTE - Brasil
Universidade Estadual do Oeste do Paraná - Brasil
4 Galea, Manuel - Pontificia Universidad Católica de Chile - Chile
5 Nicolis, Orietta - Universidad Nacional Andrés Bello - Chile
Univ Messina - Italia
Università degli Studi di Messina - Italia

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Council for Scientific and Technological Development (CNPq)
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundacäo Araucäria
Coordination for the Improvement of Higher Education Personnel (CAPES)
Fundacao Araucaria of the state of Parana

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by funding from the Coordination for the Improvement of Higher Education Personnel (CAPES), Financing Code 001, the Fundacao Araucaria of the State of Parana, and the National Council for Scientific and Technological Development (CNPq).
This research was funded by funding from the Coordination for the Improvement of Higher Education Personnel (CAPES), Financing Code 001, the Funda\u00E7\u00E3o Arauc\u00E1ria of the State of Paran\u00E1, and the National Council for Scientific and Technological Development (CNPq).

Muestra la fuente de financiamiento declarada en la publicación.