Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.IJNONLINMEC.2025.105084 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
An implicit constitutive relation, in which the Hencky strain tensor is assumed to be a function of the Kirchhoff stress tensor, is applied to analyse isotropic compressible and quasi-incompressible nonlinear elastic solids. The implicit relation is based on the use of a Gibbs potential. Experimental data allow the determination of the determinant of the deformation gradient as a function of the spherical part of the stress, commonly referred to in the literature as 'pressure'. By substituting the expression for the Hencky strain tensor into the aforementioned relation, a first-order linear partial differential equation for the Gibbs potential is obtained. The solution of this equation defines a class of elastic body that can be used to fit experimental data for nonlinear compressible solids. Some boundary-value problems are solved, considering both homogeneous and non-homogeneous deformations (in this latter case the inflation of a cylindrical annulus). The implicit constitutive relation is applied to fit experimental data for a type of natural rubber and a class of polypropylene foam. Using these constitutive relations, the problem of inflation of a cylindrical annulus is further analysed numerically.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Bustamante, Roger | - |
Universidad de Chile - Chile
|
| 2 | Arrue, P. | - |
Universidad Técnica Federico Santa María - Chile
|