Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Multimodal dataset for sensor fusion in fall detection
Indexado
WoS WOS:001469410200001
Scopus SCOPUS_ID:105001795563
DOI 10.7717/PEERJ.19004
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The necessity for effective automatic fall detection mechanisms in older adults is driven by the growing demographic of elderly individuals who are at substantial health risk from falls, particularly when residing alone. Despite the existence of numerous fall detection systems (FDSs) that utilize machine learning and predictive modeling, accurately distinguishing between everyday activities and genuine falls continues to pose significant challenges, exacerbated by the varied nature of residential settings. Adaptable solutions are essential to cater to the diverse conditions under which falls occur. In this context, sensor fusion emerges as a promising solution, harnessing the unique physical properties of falls. The success of developing effective detection algorithms is dependent on the availability of comprehensive datasets that integrate data from multiple synchronized sensors. Our research introduces a novel multisensor dataset designed to support the creation and evaluation of advanced multisensor fall detection algorithms. This dataset was compiled from simulations of ten different fall types by ten participants, ensuring a wide array of scenarios. Data were collected using four types of sensors: a mobile phone equipped with a single-channel, three-dimensional accelerometer; a far infrared (FIR) thermal camera; an $8x8$ LIDAR; and a 60-64 GHz radar. These sensors were selected for their combined effectiveness in capturing detailed aspects of fall events while mitigating privacy issues linked to visual recordings. Characterization of the dataset was undertaken using two key metrics: the instantaneous norm of the signal and the temporal difference between consecutive frames. This analysis highlights the distinct variations between fall and non-fall events across different sensors and signal characteristics. Through the provision of this dataset, our objective is to facilitate the development of sensor fusion algorithms that surpass the accuracy and reliability of traditional single-sensor FDSs.

Revista



Revista ISSN
Peer J 2167-8359

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Multidisciplinary Sciences
Scopus
Agricultural And Biological Sciences (All)
Biochemistry, Genetics And Molecular Biology (All)
Neuroscience (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Taramasco, Carla - Universidad Nacional Andrés Bello - Chile
Universidad Mayor - Chile
2 Pineiro, Miguel - Universidad Nacional Andrés Bello - Chile
3 Ormeno-Arriagada, Pablo - Universidad de Viña del Mar - Chile
4 Robles, Diego - Universidad de Valparaíso - Chile
Universidad Diego Portales - Chile
5 Araya, David - Universidad Nacional Andrés Bello - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Milenio
Fondecyt Regular Project
Agencia Nacional de Investigación y Desarrollo

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported by the FONDECYT Regular project 1201787 "Multimodal Machine Learning approach for detecting pathological activity patterns in elderlies" and the FOVI220145 project "International collaboration program for research and development of intelligent environments." The work was further supported by ANID-MILENIO-NCS2021_013. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
This work was supported by the FONDECYT Regular project 1201787 ''Multimodal Machine Learning approach for detecting pathological activity patterns in elderlies'' and the FOVI220145 project ''International collaboration program for research and development of intelligent environments.'' The work was further supported by ANID - MILENIO - NCS2021_013. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Muestra la fuente de financiamiento declarada en la publicación.