Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Validity and accuracy of artificial intelligence-based dietary intake assessment methods: a systematic review
Indexado
WoS WOS:001471004000001
Scopus SCOPUS_ID:105002698379
DOI 10.1017/S0007114525000522
Año 2025
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



One of the most significant challenges in research related to nutritional epidemiology is the achievement of high accuracy and validity of dietary data to establish an adequate link between dietary exposure and health outcomes. Recently, the emergence of artificial intelligence (AI) in various fields has filled this gap with advanced statistical models and techniques for nutrient and food analysis. We aimed to systematically review available evidence regarding the validity and accuracy of AI-based dietary intake assessment methods (AI-DIA). In accordance with PRISMA guidelines, an exhaustive search of the EMBASE, PubMed, Scopus and Web of Science databases was conducted to identify relevant publications from their inception to 1 December 2024. Thirteen studies that met the inclusion criteria were included in this analysis. Of the studies identified, 61<middle dot>5 % were conducted in preclinical settings. Likewise, 46<middle dot>2 % used AI techniques based on deep learning and 15<middle dot>3 % on machine learning. Correlation coefficients of over 0<middle dot>7 were reported in six articles concerning the estimation of calories between the AI and traditional assessment methods. Similarly, six studies obtained a correlation above 0<middle dot>7 for macronutrients. In the case of micronutrients, four studies achieved the correlation mentioned above. A moderate risk of bias was observed in 61<middle dot>5 % (n 8) of the articles analysed, with confounding bias being the most frequently observed. AI-DIA methods are promising, reliable and valid alternatives for nutrient and food estimations. However, more research comparing different populations is needed, as well as larger sample sizes, to ensure the validity of the experimental designs.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Nutrition & Dietetics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Cofré-Jara, Sebastián Hombre Universidad Católica del Maule - Chile
Pontificia Universidad Católica de Chile - Chile
Universidad de Chile - Chile
2 Sanchez, Camila - Universidad Católica del Maule - Chile
3 Quezada-Figueroa, Gladys Mujer Pontificia Universidad Católica de Chile - Chile
Universidad de Chile - Chile
Universidad del Bío Bío - Chile
4 Lopez-Cortes, Xaviera A. - Universidad Católica del Maule - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.