Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Application of Metaheuristics for Optimizing Predictive Models in iHealth: A Case Study on Hypotension Prediction in Dialysis Patients
Indexado
WoS WOS:001496683600001
Scopus SCOPUS_ID:105006739838
DOI 10.3390/BIOMIMETICS10050314
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Intradialytic hypotension (IDH) is a critical complication in patients with chronic kidney disease undergoing dialysis, affecting both patient safety and treatment efficacy. This study examines the application of advanced machine learning techniques, combined with metaheuristic optimization methods, to improve predictive models for intradialytic hypotension (IDH) in hemodialysis patients. Given the critical nature of IDH, which can lead to significant complications during dialysis, the development of effective predictive tools is vital for improving patient safety and outcomes. Dialysis session data from 758 patients collected between January 2016 and October 2019 were analyzed. Particle Swarm Optimization, Grey Wolf Optimizer, Pendulum Search Algorithm, and Whale Optimization Algorithm were employed to reduce the feature space, removing approximately 45% of clinical and analytical variables while maintaining high recall for the minority class of patients experiencing hypotension. Among the evaluated models, the XGBoost classifier showed superior performance, achieving a macro F-score of 0.745 with a recall of 0.756 and a precision of 0.718. These results highlight the effectiveness of the combined approach for early identification of patients at risk for IDH, minimizing false negatives, and improving clinical decision-making in nephrology.

Revista



Revista ISSN
2313-7673

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Cisternas-Caneo, Felipe - Pontificia Universidad Católica de Valparaíso - Chile
2 Santamera-Lastras, Maria - Univ Alcala - España
Universidad de Alcalá - España
3 Barrera-Garcia, Jose - Pontificia Universidad Católica de Valparaíso - Chile
4 Crawford, Broderick - Pontificia Universidad Católica de Valparaíso - Chile
5 Soto, Ricardo - Pontificia Universidad Católica de Valparaíso - Chile
6 Brante-Aguilera, Cristobal - Pontificia Universidad Católica de Valparaíso - Chile
7 Garces-Jimenez, Alberto - Univ Alcala - España
Ramon y Cajal Inst Hlth Res IRYCIS - España
Universidad de Alcalá - España
Instituto Ramón y Cajal de Investigación Sanitaria - España
8 Rodriguez-Puyol, Diego - Univ Alcala - España
Ramon y Cajal Inst Hlth Res IRYCIS - España
Hosp Univ Principe Asturias - España
Universidad de Alcalá - España
Instituto Ramón y Cajal de Investigación Sanitaria - España
Hospital Universitario Príncipe de Asturias - España
9 Gomez-Pulido, Jose Manuel - Univ Alcala - España
Ramon y Cajal Inst Hlth Res IRYCIS - España
Universidad de Alcalá - España
Instituto Ramón y Cajal de Investigación Sanitaria - España

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Instituto de Salud Carlos III
Agencia Nacional de Investigación y Desarrollo
National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL
Agenția Națională pentru Cercetare și Dezvoltare
Instituto de Salud Carlos III (ISCIII) within the program of RD projects
Investiga sin Fronteras

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
\The authors would like to thank Pablo Herrera for his previous work on the analysis and debugging of the analytical and clinical databases used. Felipe Cisternas-Caneo is supported by the National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2023-21230203. Jose Barrera-Garcia is supported by the National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2024-21242516. This work is part of the project "Prevention of serious pathological events in hemodialysis patients by non-invasive continuous monitoring of vital signs and analysis of circular biomarkers (ALLPREVENT)", PMPTA23/00033, which has been funded by the Instituto de Salud Carlos III (ISCIII) within the program of R&D projects linked to personalized medicine and advanced therapies. The authors are supported by the grant Investiga sin Fronteras/VINCI/PUCV/2024.04.INV. COIL.
The authors would like to thank Pablo Herrera for his previous work on the analysis and debugging of the analytical and clinical databases used. Felipe Cisternas-Caneo is supported by the National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2023-21230203. Jos\u00E9 Barrera-Garc\u00EDa is supported by the National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2024-21242516. This work is part of the project \u201CPrevention of serious pathological events in hemodialysis patients by non-invasive continuous monitoring of vital signs and analysis of circular biomarkers (ALLPREVENT)\u201D, PMPTA23/00033, which has been funded by the Instituto de Salud Carlos III (ISCIII) within the program of R&D projects linked to personalized medicine and advanced therapies. The authors are supported by the grant Investiga sin Fronteras/VINCI/PUCV/2024.04.INV. COIL.

Muestra la fuente de financiamiento declarada en la publicación.