Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/BIOMEDICINES13051025 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Background: Artificial intelligence tools can help improve the clinical management of patients with severe COVID-19. The aim of this study was to validate a machine learning model to predict admission to the Intensive Care Unit (ICU) in individuals with COVID-19. Methods: A total of 201 hospitalized patients with COVID-19 were included. Sociodemographic and clinical data as well as laboratory biomarker results were obtained from medical records and the clinical laboratory information system. Three machine learning models were generated, trained, and internally validated: logistic regression (LR), random forest (RF), and extreme gradient boosting (XGBoost). The models were evaluated for sensitivity (Sn), specificity (Sp), area under the curve (AUC), precision (P), SHapley Additive exPlanation (SHAP) values, and the clinical utility of predictive models using decision curve analysis (DCA). Results: The predictive model included the following variables: type 2 diabetes mellitus (T2DM), obesity, absolute neutrophil and basophil counts, the neutrophil-to-lymphocyte ratio (NLR), and D-dimer levels on the day of hospital admission. LR showed an Sn of 0.67, Sp of 0.65, AUC of 0.74, and P of 0.66. RF achieved an Sn of 0.87, Sp of 0.83, AUC of 0.96, and P of 0.85. XGBoost demonstrated an Sn of 0.87, Sp of 0.85, AUC of 0.95, and P of 0.86. Conclusions: Among the evaluated models, XGBoost showed robust predictive performance (Sn = 0.87, Sp = 0.85, AUC = 0.95, P = 0.86) and a favorable net clinical benefit in the decision curve analysis, confirming its suitability for predicting ICU admission in COVID-19 and aiding clinical decision-making.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Hernandez-Monsalves, Alfonso Heriberto | - |
Universidad Católica de Temuco - Chile
|
| 2 | Letelier, Pablo | Hombre |
Universidad Católica de Temuco - Chile
|
| 3 | Morales, Camilo | Hombre |
Universidad Católica de Temuco - Chile
|
| 4 | Rojas, Eduardo | - |
Universidad Católica de Temuco - Chile
|
| 5 | Saez, Mauricio Alejandro | - |
Universidad Católica de Temuco - Chile
|
| 6 | Cona, Nicolas | - |
Universidad Católica de Temuco - Chile
|
| 7 | Diaz, Javiera | - |
Universidad Católica de Temuco - Chile
|
| 8 | San Martin, Andres | - |
Hospital Hernán Henríquez Aravena - Chile
|
| 9 | Garces, Paola | - |
Ctr Med AlergoInmuno Araucania - Chile
|
| 10 | Espinal-Enriquez, Jesus | - |
Natl Inst Genom Med - México
Instituto Nacional de Medicina Genómica - México |
| 11 | GUZMAN-OYARZO, NEFTALI | Hombre |
Universidad Católica de Temuco - Chile
|
| Fuente |
|---|
| Universidad Católica de Temuco |
| Vicerrectoria de Investigacion y Postgrado |
| Vicerrectoria de Investigacion y Postgrado, Universidad Catolica de Temuco |
| Agradecimiento |
|---|
| This research was funded by Vicerrectoria de Investigacion y Postgrado, Universidad Catolica de Temuco, grant number 2024GI-AH-03. |
| This research was funded by Vicerrector\u00EDa de Investigaci\u00F3n y Postgrado, Universidad Cat\u00F3lica de Temuco, grant number 2024GI-AH-03. |