Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/978-3-031-83432-5_26 | ||||
| Año | 2025 | ||||
| Tipo | proceedings paper |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This paper tackles the cybersecurity challenges in smart energy systems using the IEC 61850 standard. We propose a real-time anomaly detection algorithm for identifying Denial of Service (DoS) attacks in networks with Intelligent Electronic Devices (IEDs). The algorithm, based on an Autoencoder neural network, analyzes network traffic to detect anomalies via reconstruction errors. Tested on a dataset with both normal and DoS attack traffic, the algorithm achieved optimal results, with the 90th percentile showing the highest F1-Score and perfect Recall, ensuring no anomalies are missed. The findings highlight its effectiveness in enhancing the cybersecurity of smart energy networks.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Castillo, Tomas | - |
Universidad de Santiago de Chile - Chile
|
| 2 | Soto, Ismael | - |
Universidad de Santiago de Chile - Chile
|
| 3 | Chavez, Hector | - |
Universidad de Santiago de Chile - Chile
|
| 4 | Guarda, T | - | |
| 5 | Portela, F | - | |
| 6 | Augusto, MF | - |
| Agradecimiento |
|---|
| This work was supported by the ANID 2024 National Doctoral Scholarship, which has been fundamental to continue my doctoral studies. Additionally, I would like to acknowledge the support provided by the following projects: STIC-AMSUD/AMSUD220026, Dicyt/USACH/062413SG, and FONDEF/ID23I10205. |