Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



AI and Data Analytics in the Dairy Farms: A Scoping Review
Indexado
WoS WOS:001486299600001
Scopus SCOPUS_ID:105004853248
DOI 10.3390/ANI15091291
Año 2025
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The strong growth of the world population will cause a major increase in demand for bovine milk, making it necessary to use various technologies to increase milk production efficiently. Some technologies that can contribute to solving part of this problem are those related to data analytics tools, big data, and sensor development. It is timely to review modern technologies and data analytics methods for milk predictions in view of supporting decision-making in dairy farms. To this end, a scoping review was carried out, which resulted in 151 articles of interest. Among the most important results, we found that (i) the identified studies are relatively recent with an average publication time of 5.95 years; (ii) the scope of the selected studies is mostly concentrated on milk and prediction (29%), early detection of lameness (26%), and timely detection of mastitis (13%); (iii) the type of analysis is mostly predictive (87%), and prescriptive is barely present (3%); (iv) the types of input data used in the studies are preferably historical (70%), and real-time data (25%) are used less frequently; (v) we found that the method of artificial neural networks (47%) and the convolutional neural networks (24%) are the most used for the studies regarding bovine milk output predictions. In the selected studies, the artificial neural network methods have considerable accuracy, recall, precision, and F1 Scores on average but with high ranges and standard deviations. (vi) Simulation tools are scarcely used, being present in 4% of cases. In the treatment of variability, the models reviewed are mostly deterministic (77%), and the stochastic models (5%) are considered in a small number of cases. Based on our analysis, we conclude that future research on decision-making tools will benefit from the advantages of artificial neural networks in data analytics combined with optimization-simulation methods.

Revista



Revista ISSN
Animals 2076-2615

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Veterinary Sciences
Agriculture, Dairy & Animal Science
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Palma, Osvaldo - Univ Lleida - España
Universidad Nacional Andrés Bello - Chile
Universitat de Lleida - España
2 Pla-Aragones, Lluis M. Hombre Univ Lleida - España
Agrotecnio CERCA Ctr - España
Universitat de Lleida - España
Agrotecnio Centre de Recerca en Agrotecnologia - España
3 Mac Cawley, Alejandro - Pontificia Universidad Católica de Chile - Chile
4 ALBORNOZ-SANHUEZA, VICTOR MANUEL Hombre Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
CYTED program
CYTED Ciencia y Tecnología para el Desarrollo

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by CYTED program, grant number 524RT0158. Alejandro Mac Cawley acknowledges the financial support from ANID-FONDECYT 1250752.
This research was funded by CYTED program, grant number 524RT0158. Alejandro Mac Cawley acknowledges the financial support from ANID-FONDECYT 1250752.

Muestra la fuente de financiamiento declarada en la publicación.