Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Bayesian hierarchical network model for forecasting daily river stage for rainfed river networks
Indexado
WoS WOS:001469927200001
Scopus SCOPUS_ID:105000059115
DOI 10.1016/J.JHYDROL.2025.132894
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We adapt a Bayesian Hierarchical Network Model (BHNM) for modeling and ensemble forecasting of daily river stages at multiple gauges on a rainfed river network. The stage at a gauge on any day is modeled as a Probability Density Function (PDF), with parameters varying temporally and spatially across the gauges. The PDF parameters vary as a function of covariates that include stage, streamflow, and precipitation from previous times at upstream gauges and catchment areas between gauges. This leverages the network structure of the river to capture spatial correlation along with the river basin hydrologic processes encapsulated in them. With suitable priors on the model parameters, likelihood functions, and, using Markov Chain Monte Carlo simulation approach predictive posterior distributions of all the space-time model parameters are obtained and, consequently, that of river stages across the network for any day. The best model, which includes the PDF type and sub-set of covariates, is obtained via objective criteria, Deviance Information Criteria (DIC). The model is demonstrated by applying it to daily stages at four gauges on the monsoon rainfed Narmada River in western India during the peak monsoon period (July-August) of 1978 to 2014 period. Model validation in cross-validation mode shows skillful and reliable forecasts of river stages, including higher stages that correspond to floods relative to a null-model of linear regression. Since river stages are often used in flood disaster management and preparedness efforts, this model and the skillful outputs enhance the potential for effective real time flood warning and mitigation.

Revista



Revista ISSN
Journal Of Hydrology 0022-1694

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Civil
Geosciences, Multidisciplinary
Water Resources
Scopus
Water Science And Technology
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Rastogi, Naman K. - UNIV COLORADO - Estados Unidos
College of Engineering and Applied Science - Estados Unidos
University of Colorado Boulder - Estados Unidos
2 Rajagopalan, Balaji - UNIV COLORADO - Estados Unidos
College of Engineering and Applied Science - Estados Unidos
University of Colorado Boulder - Estados Unidos
3 Ossandon, Alvaro - Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Técnica Federico Santa María
Ministry of Earth sciences
Monsoon Mission Project III of the Ministry of Earth Sciences, India

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by the Monsoon Mission Project III of the Ministry of Earth Sciences, India. The third author was supported by the Universidad Tecnica Federico Santa Maria via Proyecto Interno codigo PI_LIR_24_01.
This research was funded by the Monsoon Mission Project III of the Ministry of Earth Sciences, India. The third author was supported by the Universidad T\u00E9cnica Federico Santa Mar\u00EDa via Proyecto Interno c\u00F3digo PI_LIR_24_01.

Muestra la fuente de financiamiento declarada en la publicación.