Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1007/S00031-025-09910-6 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Let X subset of P-K(m) be a smooth irreducible projective algebraic variety of dimension d >= 1, defined over an algebraically closed field K of characteristic p >= 0. Let n >= d + 1 and k >= 2 be integers. If p > 0, then we also assume k to be relatively prime to p and that k - 1 is not a power of p. We say that X is a generalized Fermat variety of type (d; k, n) if there is a Galois branched covering pi: X -> P-K(d) , with a group of Deck transformations Z(k)(n) congruent to H < Aut(X), whose branch divisor consists of n + 1 hyperplanes in general position (each one of branch order k). In this case, the group H is called a generalized Fermat group of type (d; k, n). We prove that, if either (i) p = 2 or (ii) p not equal 2 and (d; k, n) is not an element of {(2; 2, 5), (2; 4, 3)}, then a generalized Fermat variety of type (d; k, n) has a unique generalized Fermat group of that type.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | HIDALGO-ORTEGA, RUBEN ANTONIO | Hombre |
Universidad de La Frontera - Chile
|
| 2 | Hughes, Henry F. | - |
Universidad de La Frontera - Chile
Universidad Austral de Chile - Chile |
| 3 | Leyton-alvarez, Maximiliano | - |
Universidad de Talca - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondo Nacional de Desarrollo Cientfico y Tecnolgico |
| Agradecimiento |
|---|
| The authors would like to thank the referees for their effort in reviewing this paper and for the provided suggestions, comments, and corrections. |
| This work was partially supported by Fondo Nacional de Desarrollo Cient\u00EDfico y Tecnol\u00F3gico (FONDECYT): projects ANID: 1230001, 1220261 and 1221535. |