Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.ASOC.2025.113043 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
The increasing frequency and intensity of large wildfires have become a significant natural hazard, requiring the development of advanced decision-support tools for resilient landscape design. Existing methods, such as Mixed Integer Programming and Stochastic Optimization, while effective, are computationally demanding. In this study, we introduce a novel Deep Reinforcement Learning (DRL) methodology to optimize the strategic placement of firebreaks across diverse landscapes. We employ Deep Q-Learning, Double Deep Q-Learning, and Dueling Double Deep Q-Learning, integrated with the Cell2Fire fire spread simulator and Convolutional Neural Networks. Our DRL agent successfully learns optimal firebreak locations, demonstrating superior performance compared to heuristics, especially after incorporating a pre-training loop. This improvement ranges between 1.59%-1.7% with respect to the heuristic, depending on the size of the instance, and 4.79%-6.81% when compared to a random solution. Our results highlight the potential of DRL for fire prevention, showing convergence with favorable results in cases as large as 40 x 40 cells. This study represents a pioneering application of reinforcement learning to fire prevention and landscape management.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Murray, Lucas | - |
Universidad de Chile - Chile
|
| 2 | Castillo, Tatiana | - |
Universidad de Chile - Chile
|
| 3 | de Diego, Isaac Martin | - |
Rey Juan Carlos Univ - España
Universidad Rey Juan Carlos - España |
| 4 | Weber, Richard | - |
Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile |
| 5 | Gonzalez-Olabarria, Jose Ramon | - |
Ctr Ciencia i Tecnol Forestal Catalunya - España
|
| 6 | Garcia-Gonzalo, Jordi | - |
Ctr Ciencia i Tecnol Forestal Catalunya - España
|
| 7 | WEINTRAUB-POHORILLE, ANDRES FELIX | Hombre |
Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile |
| 8 | Carrasco-Barra, Jaime | - |
Universidad Tecnológica Metropolitana - Chile
Instituto Sistemas Complejos de Ingeniería - Chile |
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Tecnológica Metropolitana |
| European Union |
| H2020 Marie Skłodowska-Curie Actions |
| Horizon 2020 |
| Agencia Nacional de Investigación y Desarrollo |
| ANID/FONDECYT Project |
| Competition for Research Regular Projects, Universidad Tecnologica Metropolitana |
| ANID PIA/PUENTE |
| Agradecimiento |
|---|
| Project supported by the Competition for Research Regular Projects, code LPR23-08, Universidad Tecnologica Metropolitana. This work was funded by the European Union's Horizon 2020 Research and Innovation Programme through: (1) the project entitled "Innovation technologies & socio-ecologicaleconomic solutions for fire resilient territories in Europe-FIRE-RES" under grant agreement No 101037419, (2) under the Marie Sklodowska-Curie grant agreement No 101007950, project DecisionES. The work was partially funded by ANID PIA/PUENTE AFB230002 and Fondecyt No 1220893. JC acknowledges the support of the ANID/Fondecyt project No 3210311. |
| Project supported by the Competition for Research Regular Projects, code LPR23-08, Universidad Tecnol\u00F3gica Metropolitana. This work was funded by the European Union's Horizon 2020 Research and Innovation Programme through: (1) the project entitled \u201CInnovation technologies & socio-ecologicaleconomic solutions for fire resilient territories in Europe - FIRE-RES\u201D under grant agreement No 101037419, (2) under the Marie Sklodowska-Curie grant agreement No 101007950, project DecisionES. The work was partially funded by ANID PIA/PUENTE AFB230002 and Fondecyt No 1220893. JC acknowledges the support of the ANID/Fondecyt project No 3210311. |