Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Potato plant phenotyping and characterisation utilising machine learning techniques: A state-of-the-art review and current trends
Indexado
WoS WOS:001464461300001
Scopus SCOPUS_ID:105001729643
DOI 10.1016/J.COMPAG.2025.110304
Año 2025
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Globally, potatoes are the fourth most produced food crop, and in the United Kingdom alone, they generated approximately 705 pound million in 2022. However, to achieve the United Nations (UN) Sustainable Development Goals (SDG), potato farmers need to sustainably increase yields to address the growing demand for both food and land. Crop yield can be affected by various factors, including disease, pests, and nutrient deficiencies. To tackle these challenges and optimise yields, researchers have leveraged remote sensing platforms for highthroughput non-destructive phenotyping. Data collected from these platforms can be used to develop machine learning (ML) models aimed at addressing the aforementioned issues. To summarise recent developments in ML models applied to potato plant phenotyping, a systematic review of journal articles from the last seven years was conducted. This review underscored the advantages of Deep Learning (DL) approaches and the rising trend of Convolutional Neural Network (CNN)-based architectures, while also noting the limited availability of data for training these models. This review is intended to benefit researchers and farmers by providing an up-to-date review of ML models in potato plant phenotyping.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Agriculture, Multidisciplinary
Computer Science, Interdisciplinary Applications
Scopus
Agronomy And Crop Science
Computer Science Applications
Horticulture
Forestry
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Johnson, Ciaran Miceal - UNIV EDINBURGH - Reino Unido
Heriot Watt Univ - Reino Unido
The University of Edinburgh - Reino Unido
2 Estrada, Juan Sebastian - Universidad Técnica Federico Santa María - Chile
3 Cheein, Fernando Auat - Universidad Técnica Federico Santa María - Chile
Harper Adams Univ - Reino Unido

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Engineering and Physical Sciences Research Council
Engineering and Physical Sciences Research Council (EPSRC) Centre

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
CJ: PhD funding is provided by Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Robotics and Autonomous Systems.
CJ: PhD funding is provided by Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Robotics and Autonomous Systems.

Muestra la fuente de financiamiento declarada en la publicación.