Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Mechanical properties of self compacting concrete reinforced with hybrid fibers and industrial wastes under elevated heat treatment
Indexado
WoS WOS:001468378500003
Scopus SCOPUS_ID:105003282804
DOI 10.1038/S41598-025-96899-3
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Machine learning prediction of the mechanical properties of self-compacting concrete (SCC) reinforced with hybrid fibers, incorporating industrial wastes like fly ash and blast furnace slag, and cured under elevated heat provides a reliable and efficient alternative to traditional laboratory experiments. In this work, extensive literature review leading to the collection, sorting and curation of a global database representative of the mechanical properties of self-compacting concrete reinforced with hybrid fiber mixed with industrial wastes for sustainable construction was conducted. The collected database constituted traditional concrete components and admixtures such as Cement (C), Fly ash (FA), Slag (BFS), Fine Aggregate (FAg), Coarse Aggregate (CAg), Water (W), Superplasticizer (PL), Fiber (Fi), and Temperature (Temp.) studied under the mechanical properties such as the Compressive Strength (Fc), Tensile Strength (Fsp), and Flexural Strength (Ff). The collected 114 records were divided into training set (90 records = 80%) and validation set (24 records = 20%) following the guidelines for data partitioning for optimal performance in machine learning predictions. Different advanced machine learning methods created using "Weka Data Mining" software version 3.8.6 were applied such as "Semi-supervised classifier (Kstar)", "M5 classifier (M5Rules), "Elastic net classifier (ElasticNet), "Correlated Nystrom Views (XNV)", and "Decision Table (DT)" to predict the output. The Hoffman/Gardener and SHAP techniques are used to estimate the sensitivity of the input parameter on the output. Finally, various performance metrics are used to evaluate the reliability of the models. The results show that the machine learning models show varying degrees of predictive accuracy, with the Kstar and XNV models consistently outperforming others across all mechanical properties. However, Kstar with accuracies of 96.5%, 96.0%, and 97.0% for Fc, Fsp, and Ff predictions, respectively proposed the most decisive model. Also, the Hoffman and Gardener method highlights the role of the binders, chemical additives, and curing, whereas SHAP attributes greater importance to aggregates and binder interactions.

Revista



Revista ISSN
Scientific Reports 2045-2322

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Multidisciplinary Sciences
Scopus
Multidisciplinary
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Onyelowe, Kennedy C. - Michael Okpara Univ Agr - Nigeria
Kampala Int Univ - Uganda
Michael Okpara University of Agriculture - Nigeria
Kampala International University - Uganda
2 Hanandeh, Shadi - Al Balqa Appl Univ - Jordania
Al-Balqa applied University - Jordania
3 Kamchoom, Viroon - Excellent Ctr Green & Sustainable Infrastruct - Tailandia
King Mongkut's Institute of Technology Ladkrabang - Tailandia
4 Ebid, Ahmed M. - Future Univ Egypt - Egipto
Faculty of Engineering & Technology - Egipto
5 Polo, Susana Monserrat Zurita - Escuela Super Politecn Chimborazo ESPOCH - Ecuador
Escuela Superior Politécnica de Chimborazo - Ecuador
6 Silva, Vilma Fernanda Noboa - Escuela Super Politecn Chimborazo ESPOCH - Ecuador
Escuela Superior Politécnica de Chimborazo - Ecuador
7 Murillo, Rodney Orlando Santillan - Escuela Super Politecn Chimborazo ESPOCH - Ecuador
Escuela Superior Politécnica de Chimborazo - Ecuador
8 Leon, Vicente Javier Parra - Escuela Super Politecn Chimborazo ESPOCH - Ecuador
Escuela Superior Politécnica de Chimborazo - Ecuador
9 Arunachalam, Krishna Prakash - Universidad Tecnológica Metropolitana - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.