Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Conjectures on the Stability of Linear Control Systems on Matrix Lie Groups
Indexado
WoS WOS:001475711000001
Scopus SCOPUS_ID:105003590653
DOI 10.3390/SYM17040593
Año 2025
Tipo revisión

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Thestability of a control system is essential for its effective operation. Stability implies that small changes in input, initial conditions, or parameters do not lead to significant fluctuations in output. Various stability properties, such as inner stability, asymptotic stability, and BIBO (Bounded Input, Bounded Output) stability, are well understood for classical linear control systems in Euclidean spaces. This paper aims to thoroughly address the stability problem for a class of linear control systems defined on matrix Lie groups. This approach generalizes classical models corresponding to the latter when the group is Abelian and non-compact. It is important to note that this generalization leads to a very difficult control system, due to the complexity of the state space and the special dynamics resulting from the drift and control vectors. Several mathematical concepts help us understand and characterize stability in the classical case. We first show how to extend these algebraic, topological, and dynamical concepts from Euclidean space to a connected Lie group of matrices. Building on classical results, we identify a pathway that enables us to formulate conjectures about stability in this broader context. This problem is closely linked to the controllability and observability properties of the system. Fortunately, these properties are well established for both classes of linear systems, whether in Euclidean spaces or on Lie groups. We are confident that these conjectures can be proved in future work, initially for the class of nilpotent and solvable groups, and later for semi-simple groups. This will provide valuable insights that will facilitate, through Jouan's Equivalence Theorem, the analysis of an important class of nonlinear control systems on manifolds beyond Lie groups. We provide an example involving a three-dimensional solvable Lie group of rigid motions in a plane to illustrate these conjectures.

Revista



Revista ISSN
Symmetry Basel 2073-8994

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Multidisciplinary Sciences
Scopus
Mathematics (All)
Chemistry (Miscellaneous)
Computer Science (Miscellaneous)
Physics And Astronomy (Miscellaneous)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ayala, Victor - Universidad de Tarapacá - Chile
2 Torreblanca Todco, Maria Mujer Univ Nacl San Agustin - Perú
Universidad Nacional de San Agustin de Arequipa - Perú
3 Valdivia, William - Univ Nacl San Agustin - Perú
Universidad Nacional de San Agustin de Arequipa - Perú

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Estabilidad de Sistemas de Control Lineales sobre Grupos de Lie

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This article was supported by the research project: "Estabilidad de Sistemas de Control Lineales sobre Grupos de Lie", PI-08-2024-UNSA.

Muestra la fuente de financiamiento declarada en la publicación.