Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1051/0004-6361/202452880 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Context. A significant challenge in the study of transient astrophysical phenomena is the identification of bogus events, among which human-made Earth-orbiting satellites and debris remain major contaminants. Existing pipelines can effectively identify satellite trails, but they often miss more complex signatures, such as collections of satellite glints. In the Rubin Observatory era, the scale of operations will increase tenfold with respect to its precursor, the Zwicky Transient Facility (ZTF), requiring crucial improvements in classification purity, data compression for informative alerts, and pipeline speed. Aims. We explore the use of a 2D Fast Fourier Transform (FFT) on difference images as a tool to improve satellite-detection machine learning algorithms. Methods. Using the Automatic Learning for the Rapid Classification of Events (ALeRCE) single-stamp classifier as a baseline, we adapted its architecture to receive a cutout of the FFT of the difference image, in addition to the three (science, reference, difference) ZTF image cutouts (hereafter stamps). We explored various stamp sizes and resolutions, assessing the benefits of incorporating FFT images, particularly when data compression is critical due to alert size limitations and pipeline speed constraints (e.g., in large-scale surveys such as the Legacy Survey of Space and Time). Results. The inclusion of the FFT can significantly improve satellite detection performance. The most notable improvement occurred in the smallest field-of-view model (16 ''), whose satellite classification accuracy increased from (72.0 +/- 2.9)% to (87.8 +/- 1.3)% after including the FFT, computed from the full 63 '' difference images. This demonstrates the effectiveness of FFT in compressing and extracting relevant large-scale satellite features. However, the FFT alone did not fully match the accuracy achieved by the full 63 '', (95.9 +/- 1.3)% and multiscale (90.6 +/- 0.8)% models, highlighting the complementary importance of contextual spatial information. Conclusions. We show how FFTs can be leveraged to cull satellite and space debris signatures from alert streams.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Carvajal, J. P. | - |
Pontificia Universidad Católica de Chile - Chile
Instituto Milenio de Astrofísica - Chile |
| 2 | Bauer, F. E. | - |
Universidad de Tarapacá - Chile
|
| 3 | Reyes-Jainaga, I. | - |
Data Observ - Chile
Data Observatory - Chile |
| 4 | FORSTER-BURON, FRANCISCO | Hombre |
Instituto Milenio de Astrofísica - Chile
Universidad de Chile - Chile |
| 5 | Munoz Arancibia, A. M. | - |
Instituto Milenio de Astrofísica - Chile
Universidad de Chile - Chile |
| 5 | Arancibia, A. M.Muñoz | - |
Instituto Milenio de Astrofísica - Chile
Universidad de Chile - Chile |
| 6 | Catelan, Marcio | Hombre |
Pontificia Universidad Católica de Chile - Chile
Instituto Milenio de Astrofísica - Chile |
| 7 | Sanchez-Saez, P. | Mujer |
Instituto Milenio de Astrofísica - Chile
European Southern Observ - Alemania |
| 8 | Ricci, C. | Hombre |
Universidad Diego Portales - Chile
Peking Univ - China Peking University - China |
| 9 | Bayo, A. | - |
European Southern Observ - Alemania
|
| Fuente |
|---|
| Universidad de Concepción |
| FONDECYT |
| CONICYT |
| Anillo |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Basal |
| FONDE-CYT |
| CONICYT QUIMAL |
| Beca de Doctorado Nacional |
| National Agency for Research and Development (ANID) |
| Agencia Nacional de Investigación y Desarrollo |
| Nucleo Milenio TITANs |
| Agenția Națională pentru Cercetare și Dezvoltare |
| BASAL Center of Mathematical Modeling |
| JPC |
| Agradecimiento |
|---|
| We acknowledge support from the National Agency for Research and Development (ANID) grants: Millennium Science Initiative ICN12_009 (FEB, AMMA, IRJ, MC) and AIM23-0001 (FEB, FF, MC), BASAL Center of Mathematical Modeling Grant FB210005 (FF, AMMA), BASAL projects ACE210002 (AB, MC) and FB210003 (JPC, FEB, AB, MC), FONDECYT Regular 1241005 (FEB), FONDECYT Regular 1231637 (MC), Beca de Doctorado Nacional (JPC). We also acknowledge the use of the Kultrun computing cluster at Universidad de Concepcion, funded by Conicyt Quimal #170001, Anillo ACT172033, Fondecyt regular 1180291, Fondecyt Iniciacion 11170268, Basal AFB-170002, and Nucleo Milenio Titans NCN19-058. We are grateful to the anonymous referee for their careful review and valuable feedback, which significantly improved the clarity and robustness of this work. |
| We acknowledge support from the National Agency for Research and Development (ANID) grants: Millennium Science Initiative ICN12_009 (FEB, AMMA, IRJ, MC) and AIM23-0001 (FEB, FF, MC), BASAL Center of Mathematical Modeling Grant FB210005 (FF, AMMA), BASAL projects ACE210002 (AB, MC) and FB210003 (JPC, FEB, AB, MC), FONDE-CYT Regular 1241005 (FEB), FONDECYT Regular 1231637 (MC), Beca de Doctorado Nacional (JPC). We also acknowledge the use of the Kultr\u00FAn computing cluster at Universidad de Concepci\u00F3n, funded by Conicyt Quimal #170001, Anillo ACT172033, Fondecyt regular 1180291, Fondecyt Iniciacion 11170268, Basal AFB-170002, and N\u00FAcleo Milenio Titans NCN19-058. We are grateful to the anonymous referee for their careful review and valuable feedback, which significantly improved the clarity and robustness of this work. |
| We acknowledge support from the National Agency for Research and Development (ANID) grants: Millennium Science Initiative ICN12_009 (FEB, AMMA, IRJ, MC) and AIM23-0001 (FEB, FF, MC), BASAL Center of Mathematical Modeling Grant FB210005 (FF, AMMA), BASAL projects ACE210002 (AB, MC) and FB210003 (JPC, FEB, AB, MC), FONDECYT Regular 1241005 (FEB), FONDECYT Regular 1231637 (MC), Beca de Doctorado Nacional (JPC). We also acknowledge the use of the Kultr\u00FAn computing cluster at Universidad de Concepci\u00F3n, funded by Conicyt Quimal #170001, Anillo ACT172033, Fondecyt regular 1180291, Fondecyt Iniciacion 11170268, Basal AFB-170002, and N\u00FAcleo Milenio Titans NCN19-058. We are grateful to the anonymous referee for their careful review and valuable feedback, which significantly improved the clarity and robustness of this work. |