Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Tuning into the spatial frequency space Satellite and space debris detection in the ZTF alert stream
Indexado
WoS WOS:001487971400001
Scopus SCOPUS_ID:105005312339
DOI 10.1051/0004-6361/202452880
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Context. A significant challenge in the study of transient astrophysical phenomena is the identification of bogus events, among which human-made Earth-orbiting satellites and debris remain major contaminants. Existing pipelines can effectively identify satellite trails, but they often miss more complex signatures, such as collections of satellite glints. In the Rubin Observatory era, the scale of operations will increase tenfold with respect to its precursor, the Zwicky Transient Facility (ZTF), requiring crucial improvements in classification purity, data compression for informative alerts, and pipeline speed. Aims. We explore the use of a 2D Fast Fourier Transform (FFT) on difference images as a tool to improve satellite-detection machine learning algorithms. Methods. Using the Automatic Learning for the Rapid Classification of Events (ALeRCE) single-stamp classifier as a baseline, we adapted its architecture to receive a cutout of the FFT of the difference image, in addition to the three (science, reference, difference) ZTF image cutouts (hereafter stamps). We explored various stamp sizes and resolutions, assessing the benefits of incorporating FFT images, particularly when data compression is critical due to alert size limitations and pipeline speed constraints (e.g., in large-scale surveys such as the Legacy Survey of Space and Time). Results. The inclusion of the FFT can significantly improve satellite detection performance. The most notable improvement occurred in the smallest field-of-view model (16 ''), whose satellite classification accuracy increased from (72.0 +/- 2.9)% to (87.8 +/- 1.3)% after including the FFT, computed from the full 63 '' difference images. This demonstrates the effectiveness of FFT in compressing and extracting relevant large-scale satellite features. However, the FFT alone did not fully match the accuracy achieved by the full 63 '', (95.9 +/- 1.3)% and multiscale (90.6 +/- 0.8)% models, highlighting the complementary importance of contextual spatial information. Conclusions. We show how FFTs can be leveraged to cull satellite and space debris signatures from alert streams.

Revista



Revista ISSN
Astronomy & Astrophysics 0004-6361

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Astronomy & Astrophysics
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Carvajal, J. P. - Pontificia Universidad Católica de Chile - Chile
Instituto Milenio de Astrofísica - Chile
2 Bauer, F. E. - Universidad de Tarapacá - Chile
3 Reyes-Jainaga, I. - Data Observ - Chile
Data Observatory - Chile
4 FORSTER-BURON, FRANCISCO Hombre Instituto Milenio de Astrofísica - Chile
Universidad de Chile - Chile
5 Munoz Arancibia, A. M. - Instituto Milenio de Astrofísica - Chile
Universidad de Chile - Chile
5 Arancibia, A. M.Muñoz - Instituto Milenio de Astrofísica - Chile
Universidad de Chile - Chile
6 Catelan, Marcio Hombre Pontificia Universidad Católica de Chile - Chile
Instituto Milenio de Astrofísica - Chile
7 Sanchez-Saez, P. Mujer Instituto Milenio de Astrofísica - Chile
European Southern Observ - Alemania
8 Ricci, C. Hombre Universidad Diego Portales - Chile
Peking Univ - China
Peking University - China
9 Bayo, A. - European Southern Observ - Alemania

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad de Concepción
FONDECYT
CONICYT
Anillo
Fondo Nacional de Desarrollo Científico y Tecnológico
Basal
FONDE-CYT
CONICYT QUIMAL
Beca de Doctorado Nacional
National Agency for Research and Development (ANID)
Agencia Nacional de Investigación y Desarrollo
Nucleo Milenio TITANs
Agenția Națională pentru Cercetare și Dezvoltare
BASAL Center of Mathematical Modeling
JPC

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We acknowledge support from the National Agency for Research and Development (ANID) grants: Millennium Science Initiative ICN12_009 (FEB, AMMA, IRJ, MC) and AIM23-0001 (FEB, FF, MC), BASAL Center of Mathematical Modeling Grant FB210005 (FF, AMMA), BASAL projects ACE210002 (AB, MC) and FB210003 (JPC, FEB, AB, MC), FONDECYT Regular 1241005 (FEB), FONDECYT Regular 1231637 (MC), Beca de Doctorado Nacional (JPC). We also acknowledge the use of the Kultrun computing cluster at Universidad de Concepcion, funded by Conicyt Quimal #170001, Anillo ACT172033, Fondecyt regular 1180291, Fondecyt Iniciacion 11170268, Basal AFB-170002, and Nucleo Milenio Titans NCN19-058. We are grateful to the anonymous referee for their careful review and valuable feedback, which significantly improved the clarity and robustness of this work.
We acknowledge support from the National Agency for Research and Development (ANID) grants: Millennium Science Initiative ICN12_009 (FEB, AMMA, IRJ, MC) and AIM23-0001 (FEB, FF, MC), BASAL Center of Mathematical Modeling Grant FB210005 (FF, AMMA), BASAL projects ACE210002 (AB, MC) and FB210003 (JPC, FEB, AB, MC), FONDE-CYT Regular 1241005 (FEB), FONDECYT Regular 1231637 (MC), Beca de Doctorado Nacional (JPC). We also acknowledge the use of the Kultr\u00FAn computing cluster at Universidad de Concepci\u00F3n, funded by Conicyt Quimal #170001, Anillo ACT172033, Fondecyt regular 1180291, Fondecyt Iniciacion 11170268, Basal AFB-170002, and N\u00FAcleo Milenio Titans NCN19-058. We are grateful to the anonymous referee for their careful review and valuable feedback, which significantly improved the clarity and robustness of this work.
We acknowledge support from the National Agency for Research and Development (ANID) grants: Millennium Science Initiative ICN12_009 (FEB, AMMA, IRJ, MC) and AIM23-0001 (FEB, FF, MC), BASAL Center of Mathematical Modeling Grant FB210005 (FF, AMMA), BASAL projects ACE210002 (AB, MC) and FB210003 (JPC, FEB, AB, MC), FONDECYT Regular 1241005 (FEB), FONDECYT Regular 1231637 (MC), Beca de Doctorado Nacional (JPC). We also acknowledge the use of the Kultr\u00FAn computing cluster at Universidad de Concepci\u00F3n, funded by Conicyt Quimal #170001, Anillo ACT172033, Fondecyt regular 1180291, Fondecyt Iniciacion 11170268, Basal AFB-170002, and N\u00FAcleo Milenio Titans NCN19-058. We are grateful to the anonymous referee for their careful review and valuable feedback, which significantly improved the clarity and robustness of this work.

Muestra la fuente de financiamiento declarada en la publicación.