Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3389/FRAI.2025.1535845 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Introduction The rapid evolution of Artificial Intelligence (AI) necessitates robust ethical frameworks to ensure responsible project deployment. This study addresses the challenge of quantifying ethical criteria in AI projects amidst contesting communicative practices, organizational structures, and enabling technologies, which shape AI's societal implications.Methods We propose a novel framework integrating Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to evaluate AI project performance and model ethical uncertainties using Fuzzy logic. A Fuzzy weighted average approach quantifies critical ethical dimensions: transparency, fairness, accountability, privacy, security, explainability, human involvement, and societal impact.Results The framework enables a structured assessment of AI projects, enhancing transparency and accountability by mapping ethical criteria to project outcomes. ANN evaluates performance metrics, while ANFIS models uncertainties, providing a comprehensive ethical evaluation under complex conditions.Discussion By combining ANN and ANFIS, this study advances the understanding of AI's ethical dimensions, offering a scalable approach for accountable AI systems. It reframes organizational communication and decision-making, embedding ethics within AI's technological and structural contexts. This work contributes to responsible AI innovation, fostering trust and societal alignment in AI deployments.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Wankhade, Sandeep | - |
Pandit Deendayal Energy Univ - India
|
| 2 | Sahni, Manoj | - |
Pandit Deendayal Energy Univ - India
|
| 3 | Leon-Castro, Ernesto | - |
Universidad Católica de la Santísima Concepción - Chile
|
| 4 | Olazabal-Lugo, Maricruz | - |
Univ Autonoma Occidente - México
Universidad Autónoma de Occidente - México |
| Fuente |
|---|
| UCSC |
| Università Cattolica del Sacro Cuore |
| SIEMCI |
| Red Sistemas Inteligentes y Expertos Modelos Computacionales Iberoamericanos |
| Agradecimiento |
|---|
| We are grateful for the invaluable resource, data and information provided by Ministry of Electronics & Information Technology, Government of India, Alphabet Inc., Deloitte and Capgemini (n.d.) Research Institute which have been instrumental in facilitating our research and analysis. Also, this research is supported by Red Sistemas Inteligentes y Expertos Modelos Computacionales Iberoamericanos (SIEMCI), project number 522RT0130 in Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (CYTED). |
| The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by UCSC 2025. |
| We are grateful for the invaluable resource, data and information provided by Ministry of Electronics & Information Technology, Government of India, Alphabet Inc., Deloitte and Research Institute which have been instrumental in facilitating our research and analysis. Also, this research is supported by Red Sistemas Inteligentes y Expertos Modelos Computacionales Iberoamericanos (SIEMCI), project number 522RT0130 in Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (CYTED). |