Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/FIRE8030113 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Wildfires pose severe threats to terrestrial ecosystems by causing loss of biodiversity, altering landscapes, compromising ecosystem services, and endangering human lives and infrastructure. Chile, with its diverse geography and climate, faces escalating wildfire frequency and intensity due to climate change. This study employs a spatial machine learning approach using a Random Forest algorithm to predict wildfire risk in Central and Southern Chile under current and future climatic scenarios. The model was trained on a time series dataset incorporating climatic, land use, and physiographic variables, with burned-area scars as the response variable. By applying this model to three projected climate scenarios, this study forecasts the spatial distribution of wildfire probabilities for multiple future periods. The model's performance was high, achieving an Area Under the Curve (AUC) of 0.91 for testing and 0.87 for validation. The accuracy, True Positive Rate (TPR), and True Negative Rate (TNR) values were 0.80, 0.87, and 0.73, respectively. Currently, the prediction of wildfire risk in Mediterranean-type climate areas and the central Araucan & iacute;a are most at risk, particularly in agricultural zones and rural-urban interfaces. However, future projections indicate a southward expansion of wildfire risk, with an overall increase in probabilities as climate scenarios become more pessimistic. These findings offer a framework for policymakers, facilitating evidence-based strategies for adaptive land management and effective mitigation of wildfire risk.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Gajardo, John | Hombre |
Universidad Austral de Chile - Chile
|
| 2 | YANEZ-ARCE, MARCO ALIRO | Hombre |
Univ Arkansas Monticello - Estados Unidos
University of Arkansas at Monticello - Estados Unidos |
| 3 | Padilla, Robert | - |
Universidad Austral de Chile - Chile
|
| 4 | ESPINOZA-MEZA, SERGIO ENRIQUE | Hombre |
Universidad Católica del Maule - Chile
|
| 5 | Carrasco-Benavides, Marcos | Hombre |
Universidad Católica del Maule - Chile
|
| Fuente |
|---|
| Agencia Nacional de Investigación y Desarrollo |
| Chilean government through the Agencia Nacional de Investigacion y Desarrollo (ANID) throughout the "Programa FONDECYT Iniciacion en la Investigacion" |
| Agradecimiento |
|---|
| The present research and publication were supported by the Chilean government through the Agencia Nacional de Investigacion y Desarrollo (ANID) throughout the "Programa FONDECYT Iniciacion en la Investigacion" (grant No. 11231083). |
| The present research and publication were supported by the Chilean government through the Agencia Nacional de Investigaci\u00F3n y Desarrollo (ANID) throughout the \u201CPrograma FONDECYT Iniciaci\u00F3n en la Investigaci\u00F3n\u201D (grant No. 11231083). |