Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/SYM17030426 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Many real-world multivariable systems need to be modeled to capture the interconnected behavior of their physical variables and to understand how uncertainty in actuators and sensors affects the system dynamics. In system identification, some estimation algorithms are formulated as multivariate data problems by assuming symmetric noise distributions, yielding deterministic system models. Nevertheless, modern multivariable systems must incorporate the uncertainty behavior as a part of the system model structure, taking advantage of asymmetric distributions to model the uncertainty. This paper addresses the uncertainty modeling and identification of a class of multivariable linear dynamic systems, adopting a Stochastic Embedding approach. We consider a nominal system model and a Gaussian mixture distributed error-model driven by an exogenous input signal. The error-model parameters are treated as latent variables and a Maximum Likelihood algorithm that functions by marginalizing the latent variables is obtained. An Expectation-Maximization algorithm that jointly uses the measurements from multiple independent experiments is developed, yielding closed-form expressions for the Gaussian mixture estimators and the noise variance. Numerical simulations demonstrate that our approach yields accurate estimates of both the multivariable nominal system model parameters and the noise variance, even when the error-model non-Gaussian distribution does not correspond to a Gaussian mixture model.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Orellana, Rafael | - |
Univ Santiago de ChileUSACH - Chile
Universidad de Santiago de Chile - Chile |
| 2 | Coronel, Maria | - |
Universidad Tecnológica Metropolitana - Chile
|
| 3 | Carvajal, Rodrigo | - |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 4 | Escarate, Pedro | - |
Pontificia Universidad Católica de Valparaíso - Chile
|
| 5 | Aguero, Juan C. | - |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| Universidad de Santiago de Chile |
| AC3E |
| Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile |
| ANID-Fondecyt |
| ANID-Basal |
| Proyecto Direccion de Investigacion Cientifica y Tecnologica |
| ANID-Basal Project Grant |
| ANID-Fondo QUIMAL |
| Proyecto Direccion de Investigacion Cientifica y Tecnologica (DICYT) Regular at Vicerrectoria de Investigacion, Innovacion y Creacion, Universidad de Santiago de Chile |
| Electrical Energy Technologies Research Center (E2TECH) |
| Electrical Energy Technologies Research Center |
| Agradecimiento |
|---|
| This research was funded by ANID-FONDECYT under grant numbers 3220403, 1211630, and 3230398; ANID-Fondo QUIMAL 2024/240012; ANID-Basal Project Grant AFB240002 (AC3E); the Electrical Energy Technologies Research Center (E2TECH); and the Proyecto Direccion de Investigacion Cientifica y Tecnologica (DICYT) Regular 062413OP at Vicerrectoria de Investigacion, Innovacion y Creacion, Universidad de Santiago de Chile. The APC was funded by ANID-FONDECYT under grant number 3220403. |
| This research was funded by ANID-FONDECYT under grant numbers 3220403, 1211630, and 3230398; ANID\u2013Fondo QUIMAL 2024/240012; ANID-Basal Project Grant AFB240002 (AC3E); the Electrical Energy Technologies Research Center (E2TECH); and the Proyecto Direcci\u00F3n de Investigaci\u00F3n Cient\u00EDfica y Tecnol\u00F3gica (DICYT) Regular 062413OP at Vicerrector\u00EDa de Investigaci\u00F3n, Innovaci\u00F3n y Creaci\u00F3n, Universidad de Santiago de Chile. The APC was funded by ANID-FONDECYT under grant number 3220403. |