Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Enhancing short-term probabilistic load forecasting and scenario generation with tailored kernel functions in mixture density networks
Indexado
WoS WOS:001494496600001
Scopus SCOPUS_ID:105004259376
DOI 10.1016/J.ESWA.2025.127932
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Power systems' reliable and cost-effective operation depends on the performance of short-term load forecasting models. Probabilistic Load Forecasting (PLF) quantifies the uncertainty of future load, facilitating the derivation of scenario trajectories. This capability aids operators' risk management and decision-making concerning energy supply, load balancing, reserve and ramping scheduling, and other grid management activities. However, traditional PLF models often face challenges stemming from asymmetry, multi-modality, heavy tails, and non-negativity in load series. To address this issue, we propose an innovative approach by incorporating PLF-tailored kernel functions into Mixture Density Networks (MDNs) through two distinct methods: (i) the introduction of the versatile four-parameter Sinh-Arcsinh distribution to enhance MDN flexibility and (ii) the strategic left-truncation of kernel functions at zero, effectively integrating prior knowledge about load series characteristics. Expanding the utility of MDNs, the study also delves into multi-step load scenario generation, pushing the boundaries of their application. Rigorous assessment against both traditional and state-of-the-art benchmarks highlights the superior performance of the proposed methods across diverse load classes. Notably, the synergy between using Sinh-Arcsinh and truncated distributions in an MDN emerges as the standout performer for both PLF and scenario generation.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Computer Science, Artificial Intelligence
Engineering, Electrical & Electronic
Operations Research & Management Science
Scopus
Computer Science Applications
Artificial Intelligence
Engineering (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Ochoa, Tomas - Universidad Técnica Federico Santa María - Chile
Imperial Coll London - Reino Unido
2 Serpell, Cristian - Universidad Técnica Federico Santa María - Chile
3 Valle, Carlos - Pontificia Universidad Católica de Valparaíso - Chile
4 Gil, Esteban - Universidad Técnica Federico Santa María - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Universidad Técnica Federico Santa María
Engineering and Physical Sciences Research Council
Leverhulme Trust
UTFSM through PIIC
ANID
Agencia Nacional de Investigación y Desarrollo
Leverhulme International Professorship

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Funding: This work was supported in part by ANID through doctoral scholarship 21170109, Basal project AFB240002, FONDECYT 1231892, FONDECYT 11230351, and UTFSM through PIIC grant 032/2021. Additionally, this work was supported by the Engineering and Physical Sciences Research Council grant number EP/Y025946/1 and by the Leverhulme International Professorship grant reference LIP-2020-002.
Funding: This work was supported in part by ANID through doctoral scholarship 21170109, Basal project AFB240002, FONDECYT 1231892, FONDECYT 11230351, and UTFSM through PIIC grant 032/2021. Additionally, this work was supported by the Engineering and Physical Sciences Research Council grant number EP/Y025946/1 and by the Leverhulme International Professorship grant reference LIP-2020-002.

Muestra la fuente de financiamiento declarada en la publicación.