Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.SCITOTENV.2017.12.204 | ||||
| Año | 2018 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Climate change and socioeconomic factors have increased the complexity of urban water supply systems. Thus, fresh water sources are being gradually diversified to improve the reliability and resilience of the systems. However, as the number of source blending options grows, optimization tools are needed to design drinking water supply systems that comply with indicators of cost, resilience, and water quality. This paper proposes a pioneering methodological approach, based on an ant-colony-optimization (ACO) algorithm, to optimize the blending of drinking water from different sources to minimize operational costs of a given system originating from a number of impaired water sources while complying with water quality standards. To evidence the potential of the ACO algorithm to solve such a system, a virtual case study was designed that considers eight fresh water sources, including seawater desalination and potable reuse. Seven scenarios were developed with different weightings to service outage, water conveyance and treatment costs while complying with water quality goals in regard to total organic carbon, nitrates, and total dissolved solids. It was shown that the cost per volumetric unit of water can vary considerably depending on the weightings of the three cost items. This paper provides a rigorous scientific approach to propose a methodology supporting the decision-making process of selecting mixture of different sources to achieve the overall lowest system cost. Hence, this work contributes to improving the resilience and sustainability of urban water supplies. (C) 2017 Elsevier B.V. All rights reserved.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Verdaguer, Marta | Mujer |
Univ Girona - España
Universitat de Girona - España |
| 2 | Molinos-Senante, Maria | Mujer |
Pontificia Universidad Católica de Chile - Chile
Centro Nacional de Investigacion para la Gestion Integrada de Desastres Naturales - Chile Centro de Desarrollo Urbano Sustentable CEDEUS - Chile National Research Center for Integrated Natural Disaster Management - Chile Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN) - Chile CONICYT/FONDAP/15110020 - Chile |
| 3 | Clara, Narcis | Hombre |
Univ Girona - España
Universitat de Girona - España |
| 4 | Santana, Mark | Hombre |
Catalan Inst Water Res ICRA - España
Catalan Institute for Water Research - España |
| 5 | Gernjak, Wolfgang | Hombre |
Catalan Inst Water Res ICRA - España
Catalan Inst Res & Adv Studies ICREA - España Catalan Institute for Water Research - España Institució Catalana de Recerca i Estudis Avançats - España |
| 6 | Poch, Manel | Hombre |
Univ Girona - España
Universitat de Girona - España |
| Fuente |
|---|
| MINECO |
| CIGIDEN |
| Ministerio de Economía y Competitividad |
| National Research Center for Integrated Natural Disaster Management |
| Ministerio de EconomÃa y Competitividad |
| National Research Center for Integrated Natural Disaster Management (CIGIDEN) |
| Agradecimiento |
|---|
| The authors would like to acknowledge the funding of MINECO through the project CTQ2014-53718-R and the National Research Center for Integrated Natural Disaster Management (CIGIDEN) CONICYT/FONDAP/15110017. |
| The authors would like to acknowledge the funding of MINECO through the project CTQ2014-53718-R and the National Research Center for Integrated Natural Disaster Management (CIGIDEN) CONICYT/FONDAP/15110017 . |