Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



End-to-End Deep Learning-Based Motion Correction and Reconstruction for Accelerated Whole-Heart Joint T1/T2 Mapping
Indexado
WoS WOS:001493073700002
Scopus SCOPUS_ID:105004600227
DOI 10.1016/J.MRI.2025.110396
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Purpose: To accelerate 3D whole-heart joint T1/T2 mapping for myocardial tissue characterization using an end-to-end deep learning algorithm for joint motion estimation and model-based motion-corrected reconstruction of multi-contrast undersampled data. Methods: A free-breathing high-resolution motion-compensated 3D joint T1/T2 water/fat sequence is employed. The sequence consists of the acquisition of four interleaved volumes with 2-echo encoding, resulting in eight volumes with different contrasts. An end-to-end non-rigid motion-corrected reconstruction network is used to estimate high quality motion-corrected reconstructions from the eight multi-contrast undersampled data for subsequent joint T1/T2 mapping. Reconstruction with the proposed approach was compared against state-of-theart motion-corrected HD-PROST reconstruction. Results: The proposed approach yields images with good visual agreement compared to the reference reconstructions. The comparison of the quantitative values in the T1 and T2 maps showed the absence of systematic errors, and a small bias of-6.35 ms and-1.8 ms, respectively. The proposed reconstruction time was 24 seconds in comparison to 2.5 hours with motion-corrected HD-PROST, resulting in a reconstruction speed-up of over 370 times. Conclusion: In conclusion, this study presents a promising method for efficient whole-heart myocardial tissue characterization. Specifically, the research highlights the potential of the multi-contrast end-to-end deep learning algorithm for joint motion estimation and model-based motion-corrected reconstruction of multi-contrast undersampled data. The findings underscore its ability to compute T1 and T2 values with good agreement when compared to the reference motion-corrected HD-PROST method, while substantially reducing reconstruction time.

Revista



Revista ISSN
Magnetic Resonance Imaging 0730-725X

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Radiology, Nuclear Medicine & Medical Imaging
Scopus
Biomedical Engineering
Radiology, Nuclear Medicine And Imaging
Biophysics
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Felsner, Lina - Kings Coll London - Reino Unido
2 Velasco, Carlos Hombre Kings Coll London - Reino Unido
3 Phair, Andrew Hombre Kings Coll London - Reino Unido
4 Fletcher, Thomas Hombre Kings Coll London - Reino Unido
5 Qi, Haikun - ShanghaiTech Univ - China
6 Botnar, Rene - Kings Coll London - Reino Unido
Pontificia Universidad Católica de Chile - Chile
Inst Biol & Biomed Engn - Chile
Millennium Inst Intelligent Healthcare Engn - Chile
TECH UNIV MUNICH - Alemania
School of Engineering and Institute for Biological and Medical Engineering - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile
Technische Universität München - Alemania
7 Prieto, Claudia - Kings Coll London - Reino Unido
Pontificia Universidad Católica de Chile - Chile
Inst Biol & Biomed Engn - Chile
Millennium Inst Intelligent Healthcare Engn - Chile
School of Engineering and Institute for Biological and Medical Engineering - Chile
Instituto Milenio en Ingeniería e Inteligencia Artificial para la Salud - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.