Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1038/S41598-025-99767-2 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Object detection methods based on deep learning have significantly reduced time-consuming tasks. Semantic segmentation has shown remarkable progress in the study of rocks, especially when applied to petrographic thin sections. Despite the development of various models for specific applications in this field with promising results, their widespread adoption remains limited. This hesitation is largely due to a lack of user confidence stemming from the absence of explainability in the outcomes provided by these models. This study explores the explainability of the state-of-the-art YOLOv11 model in detecting andalusite, biotite, and grains with oolitic textures. We trained three models using plane-polarized-light thin-section microphotographs of the selected targets. Subsequently, we applied color and singular value perturbations to the annotated images using color masks and analyzed the model's inference through connected region heatmaps. Our findings suggest that the trained models prioritize low-frequency attributes like shape, predominant colors, and contrast over the studied targets' characteristic tones. These insights contribute to the practical application of deep learning for detecting and segmenting grains and minerals in thin sections.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Morales, Joaquin | - |
Universidad Austral de Chile - Chile
|
| 2 | Saldivia, Camila | - |
Universidad Austral de Chile - Chile
|
| 3 | Lobo, Rodolfo | - |
Universidad Diego Portales - Chile
|
| 4 | del Pino, Max | - |
Universidad Austral de Chile - Chile
|
| 5 | Munoz, Marcos | - |
Universidad Austral de Chile - Chile
|
| 6 | Caniggia, Giorgio | - |
Universidad Austral de Chile - Chile
|
| 7 | Catalan, Joaquin | - |
Universidad Austral de Chile - Chile
|
| 8 | Hayde, Rafael | - |
Universidad Austral de Chile - Chile
|
| 9 | POBLETE-RAMIREZ, VICTOR HERNAN | Hombre |
Universidad Austral de Chile - Chile
|
| Fuente |
|---|
| FONDEQUIP |
| Universidad Austral de Chile |
| Patagon Supercomputer at the Austral University of Chile (FONDEQUIP) |
| Agradecimiento |
|---|
| The authors thank the School of Geology at the Austral University of Chile for providing the thin sections used for this work. We also want to thank the valuable support given by the Patagon Supercomputer at the Austral University of Chile (FONDEQUIP EQM180042). |
| The authors thank the School of Geology at the Austral University of Chile for providing the thin sections used for this work. We also want to thank the valuable support given by the Patag\u00F3n Supercomputer at the Austral University of Chile (FONDEQUIP EQM180042). |