Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/MOLECULES30102163 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Silicon-lithium clusters are promising candidates for hydrogen storage due to their lightweight composition, high gravimetric capacities, and favorable non-covalent binding characteristics. In this study, we employ density functional theory (DFT), global optimization (AUTOMATON and Kick-MEP), and Born-Oppenheimer molecular dynamics (BOMD) simulations to evaluate the structural stability and hydrogen storage performance of key Li-Si systems. The exploration of their potential energy surface (PES) reveals that the true global minima of Li6Si6 and Li10Si10 differ markedly from those of the earlier Si-Li structures proposed as structural analogs of aromatic hydrocarbons such as benzene and naphthalene. Instead, these clusters adopt compact geometries composed of one or two Si4 (Td) units and a Si2 dimer, all stabilized by surrounding Li atoms. Motivated by the recurrence of the Si4-Td motif, we explore oligomers of Li4Si4, which can be viewed as electronically transmuted analogues of P4, confirming the additive H2 uptake across dimer, trimer, and tetramer assemblies. Within the series of Si-Li clusters evaluated, the Li12Si5 sandwich complex, featuring a sigma-aromatic Si510- ring encapsulated by two Li65+ moieties, achieves the highest hydrogen capacity, adsorbing 34 H2 molecules with a gravimetric density of 23.45 wt%. Its enhanced performance arises from the high density of accessible Li+ adsorption sites and the electronic stabilization afforded by delocalized sigma-bonding. BOMD simulations at 300 and 400 K confirm their dynamic stability and reversible storage behavior, while analysis of the interaction regions confirms that hydrogen adsorption proceeds via weak, dispersion-driven physisorption. These findings clarify the structure-property relationships in Si-Li clusters and provide a basis for designing modular, lightweight, and thermally stable hydrogen storage materials.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Garcia-Argote, Williams | - |
Universidad Nacional Andrés Bello - Chile
|
| 2 | Medel, Erika | - |
Univ Autonoma Metropolitana - México
Universidad Autónoma Metropolitana -Unidad Iztapalapa - México |
| 3 | Inostroza, Diego | - |
Universidad de Chile - Chile
|
| 4 | Vasquez-Espinal, Alejandro | - |
Universidad Arturo Prat - Chile
|
| 5 | Solar-Encinas, Jose | - |
Universidad de Santiago de Chile - Chile
|
| 6 | Leyva-Parra, Luis | Hombre |
Univ Cent Chile UCEN - Chile
|
| 7 | Ruiz, Lina Maria | - |
Universidad Autónoma de Chile - Chile
|
| 8 | OSORIO-DURANGO, EDISON JAVIER | Hombre |
Univ Amer - Chile
Universidad de Las Américas Chile - Chile |
| 9 | TIZNADO-VASQUEZ, WILLIAM | Hombre |
Universidad Nacional Andrés Bello - Chile
|
| Fuente |
|---|
| FONDECYT |
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Fondecyt Project |
| Agencia Nacional de Investigación y Desarrollo |
| National Agency for Research and Development (ANID, Chile) |
| National Agency for Research and Development (ANID, Chile) through FONDECYT project |
| Agradecimiento |
|---|
| This research was funded by the National Agency for Research and Development (ANID, Chile) through FONDECYT project 1241066 (W.T.), FONDECYT project 1251871 (O.Y.), and FONDECYT project 1221019 (A.V.-E.). The APC was funded by ANID, FONDECYT project 1241066. |
| This research was funded by the National Agency for Research and Development (ANID, Chile) through FONDECYT project 1241066 (W.T.), FONDECYT project 1251871 (O.Y.), and FONDECYT project 1221019 (A.V.-E.). The APC was funded by ANID, FONDECYT project 1241066. |
| This work was supported by the National Agency for Research and Development (ANID, Chile) through FONDECYT projects 1241066, 1251871, and 1221019. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (CCSS210001). |