Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



From Aromatic Motifs to Cluster-Assembled Materials: Silicon–Lithium Nanoclusters for Hydrogen Storage Applications
Indexado
WoS WOS:001496521300001
Scopus SCOPUS_ID:105006674682
DOI 10.3390/MOLECULES30102163
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Silicon-lithium clusters are promising candidates for hydrogen storage due to their lightweight composition, high gravimetric capacities, and favorable non-covalent binding characteristics. In this study, we employ density functional theory (DFT), global optimization (AUTOMATON and Kick-MEP), and Born-Oppenheimer molecular dynamics (BOMD) simulations to evaluate the structural stability and hydrogen storage performance of key Li-Si systems. The exploration of their potential energy surface (PES) reveals that the true global minima of Li6Si6 and Li10Si10 differ markedly from those of the earlier Si-Li structures proposed as structural analogs of aromatic hydrocarbons such as benzene and naphthalene. Instead, these clusters adopt compact geometries composed of one or two Si4 (Td) units and a Si2 dimer, all stabilized by surrounding Li atoms. Motivated by the recurrence of the Si4-Td motif, we explore oligomers of Li4Si4, which can be viewed as electronically transmuted analogues of P4, confirming the additive H2 uptake across dimer, trimer, and tetramer assemblies. Within the series of Si-Li clusters evaluated, the Li12Si5 sandwich complex, featuring a sigma-aromatic Si510- ring encapsulated by two Li65+ moieties, achieves the highest hydrogen capacity, adsorbing 34 H2 molecules with a gravimetric density of 23.45 wt%. Its enhanced performance arises from the high density of accessible Li+ adsorption sites and the electronic stabilization afforded by delocalized sigma-bonding. BOMD simulations at 300 and 400 K confirm their dynamic stability and reversible storage behavior, while analysis of the interaction regions confirms that hydrogen adsorption proceeds via weak, dispersion-driven physisorption. These findings clarify the structure-property relationships in Si-Li clusters and provide a basis for designing modular, lightweight, and thermally stable hydrogen storage materials.

Revista



Revista ISSN
Molecules 1420-3049

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Chemistry, Multidisciplinary
Biochemistry & Molecular Biology
Chemistry, Organic
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Garcia-Argote, Williams - Universidad Nacional Andrés Bello - Chile
2 Medel, Erika - Univ Autonoma Metropolitana - México
Universidad Autónoma Metropolitana -Unidad Iztapalapa - México
3 Inostroza, Diego - Universidad de Chile - Chile
4 Vasquez-Espinal, Alejandro - Universidad Arturo Prat - Chile
5 Solar-Encinas, Jose - Universidad de Santiago de Chile - Chile
6 Leyva-Parra, Luis Hombre Univ Cent Chile UCEN - Chile
7 Ruiz, Lina Maria - Universidad Autónoma de Chile - Chile
8 OSORIO-DURANGO, EDISON JAVIER Hombre Univ Amer - Chile
Universidad de Las Américas Chile - Chile
9 TIZNADO-VASQUEZ, WILLIAM Hombre Universidad Nacional Andrés Bello - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
Fondo Nacional de Desarrollo Científico y Tecnológico
Fondecyt Project
Agencia Nacional de Investigación y Desarrollo
National Agency for Research and Development (ANID, Chile)
National Agency for Research and Development (ANID, Chile) through FONDECYT project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was funded by the National Agency for Research and Development (ANID, Chile) through FONDECYT project 1241066 (W.T.), FONDECYT project 1251871 (O.Y.), and FONDECYT project 1221019 (A.V.-E.). The APC was funded by ANID, FONDECYT project 1241066.
This research was funded by the National Agency for Research and Development (ANID, Chile) through FONDECYT project 1241066 (W.T.), FONDECYT project 1251871 (O.Y.), and FONDECYT project 1221019 (A.V.-E.). The APC was funded by ANID, FONDECYT project 1241066.
This work was supported by the National Agency for Research and Development (ANID, Chile) through FONDECYT projects 1241066, 1251871, and 1221019. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (CCSS210001).

Muestra la fuente de financiamiento declarada en la publicación.