Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.3390/MET15050562 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Electrolytic metallic manganese (EMM) is used as an alloying metal to provide resistance to abrasion and corrosion. Highly pure EMM is obtained through electrorecovery or electrowinning. Efforts are ongoing to improve the efficiency and profitability of this process, as 85 to 90% of manganese is produced by the mining industry. This study applied computer-aided engineering (CAE) to provide information on the behavior of the potential distribution at the electrodes in cells separated by membranes, which allows for the optimization of the EMM production process. The experimental results obtained galvanostatically for EMM allowed for validation of the simulation parameters. It was determined that the cell with 11 compartments is more suitable compared to cells with fewer compartments, since it has lower oxidation-normalized current density and oxidation potential, which affect the distribution of cathodic potential in the process of obtaining EMM. The simulation highlighted a better distribution of the cathodic and anodic potentials due to the increase in the number of electrodes. This saves time and resources in the design of electrochemical cells with a greater number of compartments.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Vigueras, Esau M. Rodriguez | - |
Univ Autonoma Estado Hidalgo UAEH - México
Universidad Autónoma del Estado de Hidalgo - México |
| 2 | Cruz, Victor E. Reyes | - |
Univ Autonoma Estado Hidalgo UAEH - México
Universidad Autónoma del Estado de Hidalgo - México |
| 3 | Madrid, Felipe M. Galleguillos | - |
Universidad de Antofagasta - Chile
|
| 4 | Murcia, Jose A. Cobos | - |
Univ Autonoma Estado Hidalgo UAEH - México
Universidad Autónoma del Estado de Hidalgo - México |
| 5 | Morales, Quinik L. Reyes | - |
Inst Potosino Invest Cient & Tecnol IPICYT - México
Instituto Potosino de Investigación Científica y Tecnológica, A.C. - México |
| 6 | Reyes, Gustavo Urbano | - |
Univ Autonoma Estado Hidalgo UAEH - México
Universidad Autónoma del Estado de Hidalgo - México |
| 7 | Ramirez, Marissa Vargas | - |
Univ Autonoma Estado Hidalgo UAEH - México
Universidad Autónoma del Estado de Hidalgo - México |
| 8 | Garcia, Felipe Legorreta | - |
Univ Autonoma Estado Hidalgo UAEH - México
Universidad Autónoma del Estado de Hidalgo - México |
| 9 | Varas, Marinka | - |
Universidad de Antofagasta - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Autónoma del Estado de Hidalgo |
| FONDAP Solar Energy Research Center |
| Agencia Nacional de Investigación y Desarrollo |
| ANID-Chile |
| Consejo Nacional de Humanidades, Ciencias y Tecnologías |
| ANID-Chile through the research project FONDECYT |
| Agradecimiento |
|---|
| This research was funded by ANID-Chile through the research project FONDECYT Initiation 11230550 and the ANID/FONDAP 1522A0006 Solar Energy Research Center SERC-Chile. |
| The authors would like to thank ANID-Chile for its support through the FONDECYT research project Initiation 11230550 and the ANID/FONDAP Solar Energy Research Center 1522A0006 SERC-Chile. They would also like to thank CONAHCYT for its financial support through the PhD scholarship in Materials Science from the Academic Area of Earth and Materials Sciences, from the Institute of Basic Sciences and Engineering of the Autonomous University of the State of Hidalgo. |
| This research was funded by ANID-Chile through the research project FONDECYT Initiation 11230550 and the ANID/FONDAP 1522A0006 Solar Energy Research Center SERC-Chile. |