Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Computational Framework for Crop Yield Estimation and Phenological Monitoring
Indexado
WoS WOS:001456038300014
Scopus SCOPUS_ID:85219179782
DOI 10.1007/978-3-031-80084-9_14
Año 2025
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Accurate crop yield estimation is crucial for the agricultural industry, as it enables effective planning, resource management, and market forecasting. This study explores the application of machine learning techniques for yield estimation and phenological monitoring in fruit production, focusing on crops from Chile. To achieve this, a comprehensive dataset was compiled, including satellite imagery, climate data, high-resolution images of fruit trees, and corresponding yield records collected from multiple farms in the central valley of Chile. The dataset was meticulously preprocessed to eliminate noise and ensure consistency across diverse sources. Vegetation indices and climate data were integrated as contextual information to enhance the predictive power of the models. Various machine learning algorithms, including random forest and gradient boosting regressors, were trained and evaluated using cross-validation and performance metrics such as mean absolute error, root mean square error, and the coefficient of determination. The results demonstrate the effectiveness of the proposed approach in accurately estimating fruit yield. The inclusion of contextual information significantly improved the models’ accuracy. Practical examples from the Chilean central valley illustrate the adaptability of the developed methodology to different fruit crops. This study highlights the potential of machine learning techniques to transform yield estimation and phenological monitoring in fruit production, providing farmers with valuable insights to optimize resource allocation and enhance productivity.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Altimiras, Francisco - INRIA - Chile
Pontificia Universidad Católica de Valparaíso - Chile
Universidad de Las Américas Chile - Chile
INRIA Chile Res Ctr - Chile
Univ Amer - Chile
2 Callejas, Sofia - INRIA - Chile
INRIA Chile Res Ctr - Chile
3 de Ruyt, Rayner - INRIA - Chile
INRIA Chile Res Ctr - Chile
4 Vidal, Natalia - INRIA - Chile
INRIA Chile Res Ctr - Chile
5 Reyes, Astrid - INRIA - Chile
INRIA Chile Res Ctr - Chile
6 Elbo, Mia - INRIA - Chile
INRIA Chile Res Ctr - Chile
7 Martí, Luis - INRIA - Chile
INRIA Chile Res Ctr - Chile
8 Sánchez-Pi, Nayat - INRIA - Chile
INRIA Chile Res Ctr - Chile
9 Guerrero, G -
10 SanMartin, J -
11 Meneses, E -
12 Hernandez, CJB -
13 Osthoff, C -
14 Diaz, JMM -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Research and Innovation Center of the Concha y Toro Winery
Inria Chile Research Center

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This research was conducted with the support of the Inria Chile Research Center and the Research and Innovation Center of the Concha y Toro Winery. Their contribution and insights greatly enriched the development of this paper.
This research was conducted with the support of the Inria Chile Research Center and the Research and Innovation Center of the Concha y Toro Winery. Their contribution and insights greatly enriched the development of this paper.

Muestra la fuente de financiamiento declarada en la publicación.