Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Fabric4show: real-time vision system for fabric defect detection and post-processing
Indexado
Scopus SCOPUS_ID:85210155462
DOI 10.1007/S44267-024-00047-W
Año 2024
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The exploration of computer vision applications for fabric defect detection has immense potential value. However, current relevant research in this area has primarily focused on detection models that aim for high detection accuracy and algorithmic efficiency, while neglecting the practical industrial production requirements. Therefore, we propose a fabric defect detection and post-processing system that integrates an optimized region with convolutional neural network (CNN) features (i.e., Faster R-CNN) for defect detection, defect localization and detection model evaluation. In addition, the proposed intelligent system incorporates novel approaches, such as a rearranged fabric dataset, anomaly detection, recommended clipping region division, and a replenishment device. This study illustrates an example of artificial intelligence (AI)-driven automated technology in fabric manufacturing. The accuracy and detection speed of different detection models under identical hardware conditions are evaluated and compared with related work. Experimental results demonstrate that the proposed approach achieves comparable performance to other models, while significantly reducing computational resource requirements. The potential efficiency of using two-stage networks on hardware systems for fabric defect detection tasks is highlighted, which is likely to have relevant implications for the textile industry.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Lin, Huaizhou - Guilin University of Electronic Technology - China
2 Cai, Dan - Guilin University of Electronic Technology - China
3 Xu, Zengmin - Guilin University of Electronic Technology - China
Anview.ai - China
4 Wu, Jinsong - Guilin University of Electronic Technology - China
Universidad de Chile - Chile
5 Sun, Lixian - Guilin University of Electronic Technology - China
6 Jia, Haibin - Guilin University of Electronic Technology - China

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Key Research and Development Program of China
Natural Science Foundation of Guangxi Province
Guilin University of Electronic Technology
Chinesisch-Deutsche Kooperationsgruppe
Free Exploration Fund of Guangxi Key Laboratory of Structure-Activity Relationship of Electronic Information Materials
Science and Technology Development Project of Guilin
Guangdong Esquel Textiles Co.,Ltd.
Aliyun Tianchi and Kaggle

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work was supported in part by the Free Exploration Fund of Guangxi Key Laboratory of Structure-Activity Relationship of Electronic Information Materials (No. 211019-Z), Guangxi Natural Science Foundation (No. 2024GXNSFAA010493), Innovation Project of GUET Graduate Education (No. 2022YCXS193), Chinesisch-Deutsche Kooperationsgruppe (No. GZ1528), National Key Research and Development Program (No. SQ2022YFB4000136), and Science and Technology Development Project of Guilin (No. 20210102-4).
This work was supported in part by the Free Exploration Fund of Guangxi Key Laboratory of Structure-Activity Relationship of Electronic Information Materials (No. 211019-Z), Guangxi Natural Science Foundation (No. 2024GXNSFAA010493), Innovation Project of GUET Graduate Education (No. 2022YCXS193), Chinesisch-Deutsche Kooperationsgruppe (No. GZ1528), National Key Research and Development Program (No. SQ2022YFB4000136), and Science and Technology Development Project of Guilin (No. 20210102-4).

Muestra la fuente de financiamiento declarada en la publicación.