Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Understanding encoder-decoder structures in machine learning using information measures
Indexado
WoS WOS:001448562800001
Scopus SCOPUS_ID:86000785104
DOI 10.1016/J.SIGPRO.2025.109983
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



We present a theory of representation learning to model and understand the role of encoder–decoder design in machine learning (ML) from an information-theoretic angle. We use two main information concepts, information sufficiency (IS) and mutual information loss to represent predictive structures in machine learning. Our first main result provides a functional expression that characterizes the class of probabilistic models consistent with an IS encoder–decoder latent predictive structure. This result formally justifies the encoder–decoder forward stages many modern ML architectures adopt to learn latent (compressed) representations for classification. To illustrate IS as a realistic and relevant model assumption, we revisit some known ML concepts and present some interesting new examples: invariant, robust, sparse, and digital models. Furthermore, our IS characterization allows us to tackle the fundamental question of how much performance could be lost, using the cross entropy risk, when a given encoder–decoder architecture is adopted in a learning setting. Here, our second main result shows that a mutual information loss quantifies the lack of expressiveness attributed to the choice of a (biased) encoder–decoder ML design. Finally, we address the problem of universal cross-entropy learning with an encoder–decoder design where necessary and sufficiency conditions are established to meet this requirement. In all these results, Shannon's information measures offer new interpretations and explanations for representation learning.

Revista



Revista ISSN
Signal Processing 0165-1684

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Engineering, Electrical & Electronic
Scopus
Electrical And Electronic Engineering
Control And Systems Engineering
Computer Vision And Pattern Recognition
Software
Signal Processing
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Silva, Jorge F. - Universidad de Chile - Chile
2 Faraggi, Victor - Universidad de Chile - Chile
3 Ramirez, Camilo - Universidad de Chile - Chile
4 Egaña, Alvaro - Universidad de Chile - Chile
5 Pavez, Eduardo - USC Viterbi School of Engineering - Estados Unidos
Univ Southern Calif - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
FONDECYT
CONICYT-Chile
Fondo Nacional de Desarrollo Científico y Tecnológico
Comisión Nacional de Investigación Científica y Tecnológica
Advanced Center for Electrical and Electronic Engineering, Basal Project
ANID-Subdireccion de Capital
ANID-Subdireccion de Capital Humano/Magister-Nacional

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This material is based on work supported by grants of CONICYT-Chile, Fondecyt 1210315 and the Advanced Center for Electrical and Electronic Engineering, Basal Project FB0008 . C. Ram\u00EDrez is supported by ANID-Subdirecci\u00F3n de Capital Humano/Mag\u00EDster-Nacional/2023 - 22230232 master\u2019s scholarship.
This material is based on work supported by grants of CONICYT-Chile, Fondecyt 1210315 and the Advanced Center for Electrical and Electronic Engineering, Basal Project FB0008 . C. Ram\u00EDrez is supported by ANID-Subdirecci\u00F3n de Capital Humano/Mag\u00EDster-Nacional/2023 - 22230232 master\u2019s scholarship.
This material is based on work supported by grants of CONICYT-Chile, Fondecyt 1250098 and the Advanced Center for Electrical and Electronic Engineering, Basal Project ABF240002. C. Ramirez is supported by ANID-Subdireccion de Capital Humano/Magister-Nacional/2023-22230232 master's scholarship.

Muestra la fuente de financiamiento declarada en la publicación.