Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Detecting Arousal and Valence in Engineering Students' Learning Activities Using Brain-Computer Interfaces
Indexado
WoS WOS:001443925900021
Scopus SCOPUS_ID:85214283709
DOI 10.1007/978-3-031-77571-0_21
Año 2024
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The literature on learning strategies is expected to mention learning styles that learners prefer when carrying out learning activities. Even questionnaires are used to determine which learning style a person prefers. There are also detractors of this idea who claim that a person can use different learning strategies depending on the type of educational activity they carry out or even that they can use other methods at the same time. In this work, we want to explore the possibility of recording some evidence that could support the idea of preferred learning styles by measuring biometric signals emitted by the brain of a person who is carrying out a learning activity using a BCI, especially using the signals that can be interpreted in the emotional dimensions of Arousal and Valence. This work hypothesizes that if a person has a particular preferred learning style, the signals emitted by their brain during the performance of a similar activity will be, on average, different from those emitted when carrying out activities related to other styles. A learning style detection test (CHAEA) was applied to a group of people to determine their preferred style according to this instrument. Then, they performed different learning tasks; each one focused on using a different learning style, so they were subject to all styles. During this activity, the signals emitted by the brain were measured using a BCI device. A Multi-Layer Perceptron (MLP) classifier translated the signals received into Arousal and Valence levels. The conclusions were that there is evidence that higher Valence values are recorded when subjected to an activity compatible with the preferred learning style. At the same time, there is no trend for Arousal.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Computer Networks And Communications
Control And Systems Engineering
Signal Processing
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Aravena, Valentina - Universidad de Chile - Chile
2 Baloian, Nelson - Universidad de Chile - Chile
3 Zurita, Gustavo - Universidad de Chile - Chile
FEN Univ Chile - Chile
4 Bravo, J -
5 Nugent, C -
6 Cleland I -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.