Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.23919/SPA61993.2024.10715609 | ||
| Año | 2024 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
This research proposes the use of convolutional neural networks (CNNs) for classifying the electrocardiograms (ECGs) using continuous wavelet transform (CWT). Various CNN architectures were compared and optimized, which employ an algorithm that halts training when the network converges. Three PhysioNet databases were collected, temporally segmented, and transformed into scalograms using CWT. Training was conducted in MATLAB, initially with the stochastic gradient descent (SGD) optimizer with Momentum and secondly with adaptive moment estimation (ADAM) optimizer, to assess its impact on learning. The results indicate that both AlexNet and GoogleNet are the best networks in terms of accuracy and training time. ADAM improves performance and training time across all networks compared to SGD, and a decrease in performance was observed when the signals were affected by noise.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Zamorano, Bastian Estay | - |
Universidad Tecnológica Metropolitana - Chile
|
| 2 | Firoozabadi, Ali Dehghan | - |
Universidad Tecnológica Metropolitana - Chile
|
| 3 | Brutti, Alessio | - |
Bruno Kessler Foundation - Italia
|
| 4 | Adasme, Pablo | - |
Universidad de Santiago de Chile - Chile
|
| 5 | Zabala-Blanco, David | - |
Universidad Católica del Maule - Chile
|
| 6 | Jativa, Pablo Palacios | - |
Universidad Diego Portales - Chile
|
| 7 | Azurdia-Meza, Cesar A. | - |
Universidad de Chile - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Agencia Nacional de Investigación y Desarrollo |
| Agradecimiento |
|---|
| This research was funded by ANID/FONDECYT Iniciaci\u00F3n No. 11230129, the Competition for Research Regular Projects, year 2021, code LPR21-02; Universidad Tecnol\u00F3gica Metropolitana, and DICYT Regular No. 062313AS, and and cost center No: 02030402-999, Department of Electricity. |