Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Combination of unsupervised discretization methods for credit risk
Indexado
Scopus SCOPUS_ID:85179381231
DOI 10.1371/JOURNAL.PONE.0289130
Año 2023
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Creating robust and explainable statistical learning models is essential in credit risk management. For this purpose, equally spaced or frequent discretization is the de facto choice when building predictive models. The methods above have limitations, given that when the discretization procedure is constrained, the underlying patterns are lost. This study introduces an innovative approach by combining traditional discretization techniques with clustering-based discretization, specifically k means and Gaussian mixture models. The study proposes two combinations: Discrete Competitive Combination (DCC) and Discrete Exhaustive Combination (DEC). Discrete Competitive Combination selects features based on the discretization method that performs better on each feature, whereas Discrete Exhaustive Combination includes every discretization method to complement the information not captured by each technique. The proposed combinations were tested on 11 different credit risk datasets by fitting a logistic regression model using the weight of evidence transformation over the training partition and contrasted over the validation partition. The experimental findings showed that both combinations similarly outperform individual methods for the logistic regression without compromising the computational efficiency. More importantly, the proposed method is a feasible and competitive alternative to conventional methods without reducing explainability.

Revista



Revista ISSN
P Lo S One 1932-6203

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Biology
Multidisciplinary Sciences
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Cabrera, José G.Fuentes - Universidad Iberoamericana - México
UNAM - México
2 Vicente, Hugo A.Pérez - Universidad Iberoamericana - México
3 Maldonado, Sebastián - Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile
4 Velasco, Jonás - Centro de Investigación en Matemáticas, A.C. - México

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Universidad Iberoamericana Ciudad de México
Agencia Nacional de Investigación y Desarrollo
Conahcyt
Scienceand Technology
National Council of Humanities, Science and Technology
NationalCouncilofHumanities

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Funding:Thisstudywasfinanciallysupportedby UniversidadIberoamericanaCiudaddeMe ´xicoin theformofagraduatescholarshipreceivedbyJF. ThisstudywasalsosupportedbyUniversidad IberoamericanaCiudaddeMe ´ xicointheformof salaryforHP.Thespecificroleofthisauthoris articulatedinthe‘authorcontributions’section. ThisstudywasalsofinanciallysupportedbyANID PIABASALintheformofanaward(AFB180003) receivedbySM.Thisstudywasalsofinancially supportedbyFONDECYTChileintheformofa grant(1200221)receivedbySM.Thisstudywas alsofinanciallysupportedbyChairsProgramofthe NationalCouncilofHumanities,Scienceand Technology(CONAHCYT)project(2193)award receivedbyJV.Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript.
Funding:Thisstudywasfinanciallysupportedby UniversidadIberoamericanaCiudaddeMe ´xicoin theformofagraduatescholarshipreceivedbyJF. ThisstudywasalsosupportedbyUniversidad IberoamericanaCiudaddeMe ´ xicointheformof salaryforHP.Thespecificroleofthisauthoris articulatedinthe‘authorcontributions’section. ThisstudywasalsofinanciallysupportedbyANID PIABASALintheformofanaward(AFB180003) receivedbySM.Thisstudywasalsofinancially supportedbyFONDECYTChileintheformofa grant(1200221)receivedbySM.Thisstudywas alsofinanciallysupportedbyChairsProgramofthe NationalCouncilofHumanities,Scienceand Technology(CONAHCYT)project(2193)award receivedbyJV.Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript.

Muestra la fuente de financiamiento declarada en la publicación.