Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1371/JOURNAL.PONE.0289130 | ||
| Año | 2023 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Creating robust and explainable statistical learning models is essential in credit risk management. For this purpose, equally spaced or frequent discretization is the de facto choice when building predictive models. The methods above have limitations, given that when the discretization procedure is constrained, the underlying patterns are lost. This study introduces an innovative approach by combining traditional discretization techniques with clustering-based discretization, specifically k means and Gaussian mixture models. The study proposes two combinations: Discrete Competitive Combination (DCC) and Discrete Exhaustive Combination (DEC). Discrete Competitive Combination selects features based on the discretization method that performs better on each feature, whereas Discrete Exhaustive Combination includes every discretization method to complement the information not captured by each technique. The proposed combinations were tested on 11 different credit risk datasets by fitting a logistic regression model using the weight of evidence transformation over the training partition and contrasted over the validation partition. The experimental findings showed that both combinations similarly outperform individual methods for the logistic regression without compromising the computational efficiency. More importantly, the proposed method is a feasible and competitive alternative to conventional methods without reducing explainability.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Cabrera, José G.Fuentes | - |
Universidad Iberoamericana - México
UNAM - México |
| 2 | Vicente, Hugo A.Pérez | - |
Universidad Iberoamericana - México
|
| 3 | Maldonado, Sebastián | - |
Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile |
| 4 | Velasco, Jonás | - |
Centro de Investigación en Matemáticas, A.C. - México
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad Iberoamericana Ciudad de México |
| Agencia Nacional de Investigación y Desarrollo |
| Conahcyt |
| Scienceand Technology |
| National Council of Humanities, Science and Technology |
| NationalCouncilofHumanities |
| Agradecimiento |
|---|
| Funding:Thisstudywasfinanciallysupportedby UniversidadIberoamericanaCiudaddeMe ´xicoin theformofagraduatescholarshipreceivedbyJF. ThisstudywasalsosupportedbyUniversidad IberoamericanaCiudaddeMe ´ xicointheformof salaryforHP.Thespecificroleofthisauthoris articulatedinthe‘authorcontributions’section. ThisstudywasalsofinanciallysupportedbyANID PIABASALintheformofanaward(AFB180003) receivedbySM.Thisstudywasalsofinancially supportedbyFONDECYTChileintheformofa grant(1200221)receivedbySM.Thisstudywas alsofinanciallysupportedbyChairsProgramofthe NationalCouncilofHumanities,Scienceand Technology(CONAHCYT)project(2193)award receivedbyJV.Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. |
| Funding:Thisstudywasfinanciallysupportedby UniversidadIberoamericanaCiudaddeMe ´xicoin theformofagraduatescholarshipreceivedbyJF. ThisstudywasalsosupportedbyUniversidad IberoamericanaCiudaddeMe ´ xicointheformof salaryforHP.Thespecificroleofthisauthoris articulatedinthe‘authorcontributions’section. ThisstudywasalsofinanciallysupportedbyANID PIABASALintheformofanaward(AFB180003) receivedbySM.Thisstudywasalsofinancially supportedbyFONDECYTChileintheformofa grant(1200221)receivedbySM.Thisstudywas alsofinanciallysupportedbyChairsProgramofthe NationalCouncilofHumanities,Scienceand Technology(CONAHCYT)project(2193)award receivedbyJV.Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. |