Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.5220/0012913700003838 | ||
| Año | 2024 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Automatic Algorithm Selection involves predicting which solver, among a portfolio, will perform best for a given problem instance. Traditionally, the design of algorithm selectors has relied on domain-specific features crafted by experts. However, an alternative approach involves designing selectors that do not depend on domain-specific features, but receive a raw representation of the problem’s instances and automatically learn the characteristics of that particular problem using Deep Learning techniques. Previously, such raw representation was a fixed-sized image, generated from the input text file specifying the instance, which was fed to a Convolutional Neural Network. Here we show that a better approach is to use text-based Deep Learning models that are fed directly with the input text files specifying the instances. Our approach improves on the image-based feature-free models by a significant margin and furthermore matches traditional Machine Learning models based on basic domain-specific features, known to be among the most informative features.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Salinas-Pinto, Amanda | - |
Universidad Técnica Federico Santa María - Chile
|
| 2 | Alvarado-Ulloa, Bryan | - |
Universidad Técnica Federico Santa María - Chile
|
| 3 | Hochbaum, Dorit | - |
University of California, Berkeley - Estados Unidos
|
| 4 | Francia-Carramiñana, Matías | - |
Universidad Técnica Federico Santa María - Chile
|
| 5 | Ñanculef, Ricardo | - |
Universidad Técnica Federico Santa María - Chile
|
| 6 | Asín-Achá, Roberto | - |
Universidad Técnica Federico Santa María - Chile
|