Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Uniform Language to Explain Decision Trees
Indexado
Scopus SCOPUS_ID:85214662156
DOI
Año 2024
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The formal XAI community has studied a plethora of interpretability queries aiming to understand the classifications made by decision trees. However, a more uniform understanding of what questions we can hope to answer about these models, traditionally deemed to be easily interpretable, has remained elusive. In an initial attempt to understand uniform languages for interpretability, Arenas et al. (2021) proposed FOIL, a logic for explaining black-box ML models, and showed that it can express a variety of interpretability queries. However, we show that FOIL is limited in two important senses: (i) it is not expressive enough to capture some crucial queries, and (ii) its model-agnostic nature results in a high computational complexity for decision trees. In this paper, we carefully craft two fragments of first-order logic that allow for efficiently interpreting decision trees: Q-DT-FOIL and its optimization variant OPT-DT-FOIL. We show that our proposed logics can express not only a variety of interpretability queries considered by previous literature but also elegantly allows users to specify different objectives the sought explanations should optimize for. Using finite model-theoretic techniques, we show that the different ingredients of Q-DT-FOIL are necessary for its expressiveness, and yet that queries in QDT-FOIL can be evaluated with a polynomial number of queries to a SAT solver, as well as their optimization versions in OPT-DT-FOIL. Besides our theoretical results, we provide a SAT-based implementation of the evaluation for OPT-DT-FOIL that is performant on industry-size decision trees.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Arenas, Marcelo - Pontificia Universidad Católica de Chile - Chile
RelationalAI, Inc. - Estados Unidos
2 Barceló, Pablo - Pontificia Universidad Católica de Chile - Chile
3 Bustamante, Diego - Pontificia Universidad Católica de Chile - Chile
4 Caraball, Jose - Pontificia Universidad Católica de Chile - Chile
5 Subercaseaux, Bernardo - Carnegie Mellon University - Estados Unidos

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Science Foundation
Agencia Nacional de Investigación y Desarrollo
National Center for Artificial Intelligence CENIA
Subdirección de Capital Humano

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Bustamante is funded by ANID - Subdirecci\u00F3n de Capital Humano (Mag\u00EDster Nacional, 2023, folio 22231282). Arenas is funded by ANID - Millennium Science Initiative Program - Code ICN17002. Barcel\u00F3 is funded by ANID - Millennium Science Initiative Program - Code ICN17002 and by the National Center for Artificial Intelligence CENIA FB210017, Basal ANID. Part of this work was done when Arenas and Barcel\u00F3 were visiting the Simons Institute for the Theory of Computing. Subercaseaux is supported by the U.S. National Science Foundation under grant CCF-2229099.

Muestra la fuente de financiamiento declarada en la publicación.