Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Maximum Correntropy Linear Prediction for Voice Inverse Filtering: Theoretical Framework and Practical Implementation
Indexado
Scopus SCOPUS_ID:85211474841
DOI 10.1109/TASLP.2024.3512187
Año 2024
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Voice inverse filtering methods aim at noninvasively estimating the glottal source information from the voice signal. These inverse filtering strategies typically rely on parametric models and variants of linear prediction for tuning the vocal tract filter. Weighted linear prediction schemes have proved to be the best performing for inverse filtering applications. However, the linear prediction and its variants are sensitive to the impulse-like acoustic excitations triggered by the abrupt glottal closure during voiced phonation. The present study examines the maximum correntropy criterion-based linear prediction (MCLP) for voice inverse filtering. Correntropy is a nonlinear, localized similarity measure inherently insensitive to peak-like outliers. Here, a theoretical framework is established for studying the properties of correntropy relevant for voice inverse filtering and for developing an algorithm to estimate vocal tract filter coefficients. The proposed algorithm results in a robust weighted linear prediction, where a correntropy weighting function is adjusted iteratively by a data-driven optimization scheme. The effects of correntropy kernel parameters on the performance of the MCLP method are analyzed. Characterization of the MCLP method for voice inverse filtering is addressed based on synthetic and natural sustained vowel signals. Simulations show that MCLP naturally overweights samples in the glottal closed phase, where the phonation model is more accurate. MCLP does not require prior information about the glottal instants, nor applying a predefined weighting function. Results show that MCLP performs similarly or better than other well-established inverse filtering methods based on weighted linear prediction.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Acoustics
Engineering, Electrical & Electronic
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Zalazar, Ivan A. - Oro Verde - Argentina
2 Alzamendi, Gabriel A. - Oro Verde - Argentina
3 Zanartu, Matias - Universidad Técnica Federico Santa María - Chile
4 Schlotthauer, Gaston - Oro Verde - Argentina

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
Sin Información

Muestra la fuente de financiamiento declarada en la publicación.