Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Histopathology Image Augmentation Through StyleGAN2-ADA
Indexado
WoS WOS:001456038300015
Scopus SCOPUS_ID:85219192194
DOI 10.1007/978-3-031-80084-9_15
Año 2025
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



The precise classification of histopathological images is crucial for diagnosing and treating cancer, yet the scarcity of labeled data often limits it. This study investigates the efficacy of using StyleGAN2-ADA data augmentation in histopathological image classification. In this work, we (i) evaluate the capability of StyleGAN2-ADA to generate realistic synthetic histopathological images, (ii) implement a data augmentation strategy using these images, and (iii) compare the performance of a binary classifier trained with and without the proposed augmentation. We trained a StyleGAN2-ADA model in a high-performance computing environment to generate high-quality synthetic images to augment histopathological datasets. We then trained binary classifiers using the augmented datasets for the PCam and IDC datasets and compared their performance with classifiers trained only with original data. Results showed a significant improvement in classifier accuracy, with a 5.9% increase in ROC (AUC) for the PCam dataset at 3% data availability and an 11.3% increase at 20% data availability. For the IDC dataset, the ROC (AUC) improved by 3.4% at 3% data availability and by 2.4% at 20% data availability. Notable enhancements were observed in cancer class metrics, particularly in low-data scenarios, demonstrating the effectiveness of StyleGAN2-ADA in improving classifier robustness and generalization. We conclude that StyleGAN2-ADA is an effective tool for generating high-quality synthetic histopathological images and that the proposed data augmentation strategy substantially enhances classifier performance. Thus, we improved the robustness and generalization of classification models in this critical medical field. Furthermore, it highlights the importance of HPC in accelerating deep learning research applied to complex medical problems.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Muñoz, Branndon - Universidad Técnica Federico Santa María - Chile
2 PEZOA-RIVERA, RAQUEL ANDREA Mujer Universidad Técnica Federico Santa María - Chile
Centro Científico Tecnológico de Valparaíso - Chile
3 Gutierrez, Helen - Pontificia Universidad Católica de Valparaíso - Chile
Pontificia Univ Catolica Valpara Chile - Chile
4 Guerrero, G -
5 SanMartin, J -
6 Meneses, E -
7 Hernandez, CJB -
8 Osthoff, C -
9 Diaz, JMM -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Universidad Técnica Federico Santa María
NLHPC
ANID
ANID Fondecyt
Agencia Nacional de Investigación y Desarrollo
ANID FONDECYT Postdoc Project

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors acknowledge the financial support from ANID PIA/APOYOAFB230003, ANID FONDECYT Postdoc Project and 3190740 and Universidad T\u00E9cnica Federico Santa Mar\u00EDa for Beca Financiera Mag\u00EDster. This research was partially supported by the supercomputing infrastructure of the NLHPC (CCSS210001).
The authors acknowledge the financial support from ANID PIA/APOYOAFB230003, ANID FONDECYT Postdoc Project and 3190740 and Universidad Tecnica Federico Santa Maria for Beca Financiera Magister. This research was partially supported by the supercomputing infrastructure of the NLHPC (CCSS210001).

Muestra la fuente de financiamiento declarada en la publicación.