Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A characterization of the reachable profiles of entropy solutions for the elementary wave interaction problem of convex scalar conservation laws
Indexado
WoS WOS:001454262300004
Scopus SCOPUS_ID:85219110772
DOI 10.3934/MATH.2025145
Año 2025
Tipo artículo de investigación

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this paper, we analyze and characterize the set AT which consists of all possible profiles at a fixed time of the entropy solution of the elementary wave interaction problem in a bounded domain for a convex scalar conservation law. The elementary wave interaction problem is the initial and boundary value problem for a scalar conservation law, where the flux is a strictly convex function, and the initial and boundary data are constant functions. In the first main result of the article, we state and prove that AT is a subset of the set of piecewise functions that are constant on each subdomain, or there is a subdomain where the function is strictly increasing. We prove the result by applying the method of characteristics in three steps: the Riemann problem solution, the entropy solution of the interaction of two Riemann problems, and restriction of the entropy solution to the spatial bounded domain. Moreover, we characterize the strictly increasing part of the solution’s profile regarding the flux function. In the second result, which is stated as an application of the first result, we introduce the conditions for ill-posedness and local flux identification from the knowledge of the entropy solution’s profile.

Revista



Revista ISSN
Aims Mathematics 2473-6988

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Mathematics
Mathematics, Applied
Scopus
Mathematics (All)
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Coronel, Aníbal - Universidad del Bío Bío - Chile
2 Tello, Alex - Universidad de Antofagasta - Chile
3 Huancas, Fernando - Universidad Tecnológica Metropolitana - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Fondo Nacional de Desarrollo Científico y Tecnológico
Universidad Tecnológica Metropolitana
Agencia Nacional de Investigación y Desarrollo
ANID-Chile
Agencia Nacional de Investigación y Desarrollo, ANID-Chile
Department of Mathematics of the University of Antofagasta (Chile)

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work is partially supported by the Agencia Nacional de Investigaci\u00F3n y Desarrollo, ANID-Chile, through the project FONDECYT 1230560, and by the Universidad Tecnol\u00F3gica Metropolitana through the competition for Research Regular Projects, in the year of 2023, code LPR23-03. A. C. would like to thank the Department of Mathematics of the University of Antofagasta (Chile) for the financial support of his academic visit to A. T. in October 2024, which allowed this work to be completed.
This work is partially supported by the Agencia Nacional de Investigacion y Desarrollo, ANID-Chile, through the project FONDECYT 1230560, and by the Universidad Tecnologica Metropolitana through the competition for Research Regular Projects, in the year of 2023, code LPR23-03. A. C. would like to thank the Department of Mathematics of the University of Antofagasta (Chile) for the financial support of his academic visit to A. T. in October 2024, which allowed this work to be completed.

Muestra la fuente de financiamiento declarada en la publicación.