Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||||
| DOI | 10.1016/J.EJOR.2025.02.008 | ||||
| Año | 2025 | ||||
| Tipo | artículo de investigación |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
In this paper, we introduce a novel, profit-driven classification approach for churn prevention by framing the task of targeting customers for a retention campaign as a regret minimization problem within a predict-and-optimize framework. This is the first churn prevention model to utilize this approach. Our main objective is to leverage individual customer lifetime values (CLVs) to ensure that only the most valuable customers are targeted. In contrast, many profit-driven strategies focus on churn probabilities while considering average CLVs, often resulting in significant information loss due to data aggregation. Our proposed model aligns with the principles of the predict-and-optimize framework and can be efficiently solved using stochastic gradient descent methods. Results from 13 churn prediction datasets, sourced from an investment company, underscore the effectiveness of our approach, which achieves the highest average performance in terms of profit compared to other well-established strategies.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Gómez-Vargas, Nuria | - |
Universidad de Sevilla - España
Univ Seville - España Univ Sevilla IMUS - España |
| 2 | Maldonado, Sebastián | - |
Universidad de Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile |
| 3 | Vairetti, Carla | - |
Universidad de Los Andes, Chile - Chile
Instituto Sistemas Complejos de Ingeniería - Chile |
| Fuente |
|---|
| European Commission |
| FONDECYT-Chile |
| Ministerio de Ciencia, Innovacion y Universidades |
| H2020 Marie Skłodowska-Curie Actions |
| Horizon 2020 Framework Programme |
| Agencia Nacional de Investigación y Desarrollo |
| Consejería de Transformación Económica, Industria, Conocimiento y Universidades |
| ANID PIA/PUENTE |
| Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades de la Junta de Andalucia |
| Marie Curie Actions (MSCA) |
| MSCA RISE NeEDS grant (European Union) |
| Agradecimiento |
|---|
| The authors gratefully acknowledge financial support from ANID PIA/PUENTE AFB230002 and FONDECYT-Chile, grants 11200007 and 1250045. The first author also acknowledges the funding provided by research projects PREDOC PAID2020, FQM-329, US-1381178, P18-FR-2369 (Consejer\u00EDa de Transformaci\u00F3n Econ\u00F3mica, Industria, Conocimiento y Universidades de la Junta de Andaluc\u00EDa); PID2019-110886RB-I00, PID2022-137818OB-I00 (Ministerio de Ciencia, Innovaci\u00F3n y Universidades) and MSCA RISE NeEDS grant agreement No. 822214 (European Union's Horizon 2020). |
| The authors gratefully acknowledge financial support from ANID PIA/PUENTE AFB230002 and FONDECYT-Chile, grants 11200007 and 1250045. The first author also acknowledges the funding provided by research projects PREDOC PAID2020, FQM-329, US-1381178, P18-FR-2369 (Consejer\u00EDa de Transformaci\u00F3n Econ\u00F3mica, Industria, Conocimiento y Universidades de la Junta de Andaluc\u00EDa); PID2019-110886RB-I00, PID2022-137818OB-I00 (Ministerio de Ciencia, Innovaci\u00F3n y Universidades) and MSCA RISE NeEDS grant agreement No. 822214 (European Union's Horizon 2020). |
| The authors gratefully acknowledge financial support from ANID PIA/PUENTE AFB230002 and FONDECYT-Chile, grants 11200007 and 1250045. The first author also acknowledges the funding provided by research projects PREDOC PAID2020, FQM-329, US-1381178, P18-FR-2369 (Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades de la Junta de Andalucia) ; PID2019110886RB-I00, PID2022-137818OB-I00 (Ministerio de Ciencia, Innovacion y Universidades) and MSCA RISE NeEDS grant agreement No. 822214 (European Union's Horizon 2020) . |