Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/ICA-ACCA62622.2024.10766821 | ||
| Año | 2024 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Electrical fault classification is one of the most complex tasks in electrical systems. In this paper, we propose a classification model based on scalograms using the Continuous Wavelet Transform (CWT) and feature extraction using the EfficientNetV2B3 backbone. Features are then selected using the hybrid metaheuristic algorithm GWO-WOA to maximize the multi-objective function of precision and recall for training a Quadratic Discriminant Analysis (QDA) model. The dataset was generated from a three-phase electrical model in Matlab/Simulink, with measurements of currents (Ia, Ib, Ic) and voltages (Va, Vb, Vc). CWT was used to obtain scalograms for each signal, producing a total of 6, 4 8 0 RGB-type images. The results indicate that the hybrid GWO-WOA algorithm maximizes the performance of the QDA model trained with the selected features, achieving an accuracy of 9 4 %, a precision of 9 4 %, and a recall of 9 4 %. The results for each class indicate an F1-score above 9 1 %.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Flores, Emilio | - |
Informática Universidad de Valparaíso - Chile
|
| 2 | Rementeria, Jon Xabier | - |
Universidad del País Vasco - España
|
| 3 | Planas, Estefania | - |
Universidad del País Vasco - España
|
| Agradecimiento |
|---|
| This work was funded by the Escuela de Ingenieria Inform atica, Universidad de Valparaiso, Chile, through the grant REXE N. 2552/2023. Emilio Flores was suppported by the ANID BECAS/DOCTORADO NACIONAL 21242003 and ANID PROYECTO/PROGRAMA DE FORTALECIMIENTO DE DOCTORADO 86220039. The authors would like to thank the Universidad del Pais Vasco UPV/EHU for providing the facilities used to conduct this research. |