Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:
| Indexado |
|
||
| DOI | 10.1109/ICA-ACCA62622.2024.10766455 | ||
| Año | 2024 | ||
| Tipo |
Citas Totales
Autores Afiliación Chile
Instituciones Chile
% Participación
Internacional
Autores
Afiliación Extranjera
Instituciones
Extranjeras
Cardiac MRI makes it possible to examine the morphology of the heart and blood vessels. The 4D Flow MRI sequence is used to diagnose complex cardiovascular diseases with high accuracy. Segmentation of the pulmonary arteries and aorta is essential to quantify various hemodynamic parameters. However, manual segmentation of these images presents significant challenges due to factors such as low signal-to-noise ratio and phase accumulation errors. To address this challenge, we propose a semantic segmentation cascade for automatic segmentation of pulmonary artery branches and aortic sections obtained from 4D Flow MRI angiographic images. The obtained results show that our methodology achieves accurate and consistent segmentation in segmenting artery bifurcations and sections in a limited dataset, which underlines its potential applicability in clinical settings.
| Ord. | Autor | Género | Institución - País |
|---|---|---|---|
| 1 | Sandoval, Aaron Ponce | - |
Universidad de Valparaíso - Chile
|
| 2 | Fuentes, Rodrigo Salas | - |
Universidad de Valparaíso - Chile
|
| 3 | Flores, Julio Garcia | - |
University of Calgary - Canadá
|
| 4 | Arancibia, Sergio Uribe | - |
Monash University - Australia
|
| 5 | Parraguez, Julio Sotelo | - |
Universidad Técnica Federico Santa María - Chile
|
| Fuente |
|---|
| Fondo Nacional de Desarrollo Científico y Tecnológico |
| Universidad de Valparaíso |