Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



A Study of Nationality Bias in Names and Perplexity using Off-the-Shelf Affect-related Tweet Classifiers
Indexado
Scopus SCOPUS_ID:85211779626
DOI
Año 2024
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



In this paper, we apply a method to quantify biases associated with named entities from various countries. We create counterfactual examples with small perturbations on target-domain data instead of relying on templates or specific datasets for bias detection. On widely used classifiers for subjectivity analysis, including sentiment, emotion, hate speech, and offensive text using Twitter data, our results demonstrate positive biases related to the language spoken in a country across all classifiers studied. Notably, the presence of certain country names in a sentence can strongly influence predictions, up to a 23% change in hate speech detection and up to a 60% change in the prediction of negative emotions such as anger. We hypothesize that these biases stem from the training data of pre-trained language models (PLMs) and find correlations between affect predictions and PLMs likelihood in English and unknown languages like Basque and Maori, revealing distinct patterns with exacerbate correlations. Further, we followed these correlations in-between counterfactual examples from a same sentence to remove the syntactical component, uncovering interesting results suggesting the impact of the pre-training data was more important for English-speaking-country names. Our anonymized code is available here.

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Barriere, Valentin - Universidad de Chile - Chile
2 Cifuentes, Sebastian - Centro Nacional de Inteligencia Artificial (CENIA) - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
National Center for Artificial Intelligence CENIA

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
The authors thank the reviewers for the various comments that helped to improve the manuscript. This work has been partially funded by National Center for Artificial Intelligence CENIA FB210017, Basal ANID.

Muestra la fuente de financiamiento declarada en la publicación.