Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



No Plankton Left Behind: Preliminary Results on Massive Plankton Image Recognition
Indexado
WoS WOS:001456038300012
Scopus SCOPUS_ID:85219193536
DOI 10.1007/978-3-031-80084-9_12
Año 2025
Tipo proceedings paper

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Plankton plays a crucial role in the marine ecosystem, contributing to the biogeochemical cycle and climate regulation. Traditional plankton monitoring methods struggle with the complex dynamics of ocean ecosystems, leading to a growing interest in computer vision techniques for plankton identification in microscopic images. However, most studies have used small, controlled datasets. Our research is the first to employ large, unbalanced datasets to achieve state-of-the-art plankton image recognition, bridging the gap between laboratory and real-world conditions. We addressed the challenge of training large models in a heterogeneous GPU environment, utilizing advanced models like Swin Transformers and DeiT 3, along with data augmentation and varied loss functions. Our results demonstrate that Vision Transformers (ViTs) excel in plankton image recognition, offering significant potential to improve climate change mitigation strategies.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Sin Disciplinas
Scopus
Sin Disciplinas
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Callejas, Sofía - INRIA - Chile
2 Lira, H. - INRIA - Chile
3 Berry, Andrew - INRIA - Chile
4 Marti, L. Hombre INRIA - Chile
5 Sanchez-Pi, Nayat - INRIA - Chile
6 Guerrero, G -
7 SanMartin, J -
8 Meneses, E -
9 Hernandez, CJB -
10 Osthoff, C -
11 Diaz, JMM -

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
CNRS
Centre National de la Recherche Scientifique
several Universities
RENATER
ANID Strengthening R&D capabilities Program

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
This work is funded by ANID Strengthening R&D capabilities Program CTI230007 Inria Chile and Inria Challenge Oc\u00E9anIA. Experiments presented in this paper were carried out using the Grid\u20195000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).
This work is funded by ANID Strengthening R&D capabilities Program CTI230007 Inria Chile and Inria Challenge OceanIA. Experiments presented in this paper were carried out using the Grid'5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).

Muestra la fuente de financiamiento declarada en la publicación.