Colección SciELO Chile

Departamento Gestión de Conocimiento, Monitoreo y Prospección
Consultas o comentarios: productividad@anid.cl
Búsqueda Publicación
Búsqueda por Tema Título, Abstract y Keywords



Projecting future snow changes at kilometer scale for adaptation using machine learning and a CMIP6 multi-model ensemble
Indexado
Scopus SCOPUS_ID:85215863036
DOI 10.1016/J.SCITOTENV.2025.178606
Año 2025
Tipo

Citas Totales

Autores Afiliación Chile

Instituciones Chile

% Participación
Internacional

Autores
Afiliación Extranjera

Instituciones
Extranjeras


Abstract



Assessing future snow cover changes is challenging because the high spatial resolution required is typically unavailable from climate models. This study, therefore, proposes an alternative approach to estimating snow changes by developing a super-spatial-resolution downscaling model of snow depth (SD) for Japan using a convolutional neural network (CNN)-based method, and by downscaling an ensemble of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset. After assessing the coherence of the observed reference SD dataset with independent observations, we leveraged it to train the CNN downscaling model; following its evaluation, we applied the trained model to CMIP6 climate simulations. The downscaled mean ensemble reproduced the spatial distribution and seasonality of the reference observations. We found an average decrease in the snow-covered area by about 20 % in winter and 25 % in early spring, an altitude-dependent of the SD changes, and a delayed snow cover appearance by the middle of the 21st Century under a high emission scenario. Overall, the downscaling model captures physically plausible relationships, enables high-resolution assessments of future SD based on a multi-model ensemble, produces results consistent with regional climate models, and provides valuable insights into how future snow changes will affect winter tourism and water resources, highlighting its potential benefits for a wide range of adaptation studies.

Métricas Externas



PlumX Altmetric Dimensions

Muestra métricas de impacto externas asociadas a la publicación. Para mayor detalle:

Disciplinas de Investigación



WOS
Environmental Sciences
Scopus
Waste Management And Disposal
Pollution
Environmental Engineering
Environmental Chemistry
SciELO
Sin Disciplinas

Muestra la distribución de disciplinas para esta publicación.

Publicaciones WoS (Ediciones: ISSHP, ISTP, AHCI, SSCI, SCI), Scopus, SciELO Chile.

Colaboración Institucional



Muestra la distribución de colaboración, tanto nacional como extranjera, generada en esta publicación.


Autores - Afiliación



Ord. Autor Género Institución - País
1 Damiani, Alessandro Hombre National Institute for Environmental Studies of Japan - Japón
2 Ishizaki, Noriko N. - National Institute for Environmental Studies of Japan - Japón
3 Feron, Sarah Mujer Rijksuniversiteit Groningen - Países Bajos
4 Cordero, Raul R. - Universidad de Santiago de Chile - Chile

Muestra la afiliación y género (detectado) para los co-autores de la publicación.

Financiamiento



Fuente
Japan Science and Technology Agency
Japan Society for the Promotion of Science
National Agriculture and Food Research Organization
National Institute for Environmental Studies

Muestra la fuente de financiamiento declarada en la publicación.

Agradecimientos



Agradecimiento
We thank the JMA and NARO staff for managing and making the respective datasets available. We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making their model outputs available. This research was supported by the Climate Change Adaptation Research Program of NIES , JST Grant Number JPMJPF2013 , and JSPS KAKENHI Grant Number 24K04409 .

Muestra la fuente de financiamiento declarada en la publicación.